Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 40,
  • Issue 5,
  • pp. 1308-1319
  • (2022)

Nonlinear Schrödinger Kernel for Hardware Acceleration of Machine Learning

Not Accessible

Your library or personal account may give you access

Abstract

Alternative machine learning approaches that have extremely low latency and can work with only a small training dataset are needed for applications where the insatiable demands of deep learning methods for computing power and large training data cannot be met. Here we report a new optical accelerator for AI that exploits femtosecond pulses for both data acquisition and computing enabling classification at short time scales for fast optical imaging, sensing, and metrology without increasing data dimensions. Modulation of data onto the spectrum of femtosecond optical pulses followed by projection into a new space using nonlinear optics reduces the latency in the nonlinear classification of certain data by orders of magnitude. This Femtocomputing approach is validated by the classification of various datasets, including brain intracranial pressure, cancer cell imaging, spoken digit recognition, and the classic exclusive OR benchmark for nonlinear operation. The concept is demonstrated by seeding the nonlinear effect that is responsible for many fascinating natural phenomena, such as optical rogue waves. Stimulation of nonlinear optical interactions with spectrally modulated data transforms the data such that a computationally-light linear algorithm can learn a nonlinear decision boundary that separates the data into the correct classes. Since the optical kernel is not trained, its performance is inevitably data-dependent. Quantitative comparison with a popular numerical kernel offers insights into how this physical technique accelerates inference. Single-shot operation is demonstrated using time stretch data acquisition.

PDF Article
More Like This
Phase discontinuity predictions using a machine-learning trained kernel

Firas Sawaf and Roger M. Groves
Appl. Opt. 53(24) 5439-5447 (2014)

Accelerating model synchronization for distributed machine learning in an optical wide area network

Ling Liu, Liangjun Song, Xi Chen, Hongfang Yu, and Gang Sun
J. Opt. Commun. Netw. 14(10) 852-865 (2022)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.