Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 40,
  • Issue 5,
  • pp. 1353-1359
  • (2022)

Low-Complexity Recurrent Neural Network Based Equalizer With Embedded Parallelization for 100-Gbit/s/λ PON

Not Accessible

Your library or personal account may give you access

Abstract

To meet the demand of emerging applications, such as fixed-mobile convergence for the fifth generation of mobile networks and beyond, a 100-Gbit/s/λ access network becomes the next priority for the passive optical network roadmap. We experimentally demonstrate the transmission of 100-Gbit/s/λ intensity modulation and direct detection passive optical network based on four-level pulsed amplitude modulation in the O-band by using 25G-class optics. To mitigate the severe distortions caused by inter-symbol interference and fiber nonlinearity, a low-complexity recurrent neural network based equalizer with parallel outputs is proposed. Experimental results show that the proposed recurrent neural network equalizer can consistently outperform fully-connected neural network with the same input/output size and number of training parameters. The neural network equalizer's sensitivity against quantization is also evaluated. To further understand the complexity and actual hardware resource consumption of the parallel-output equalizers, we implement an 8bits-integer-quantized neural network model using FPGA, with the benefits and challenges validated and discussed.

PDF Article
More Like This
Low-complexity Volterra-inspired neural network equalizer in 100-G band-limited IMDD PON system

Luyao Huang, Wenqing Jiang, Yongxing Xu, Weisheng Hu, and Lilin Yi
Opt. Lett. 47(21) 5692-5695 (2022)

Computational complexity comparison of feedforward/radial basis function/recurrent neural network-based equalizer for a 50-Gb/s PAM4 direct-detection optical link

Zhaopeng Xu, Chuanbowen Sun, Tonghui Ji, Jonathan H. Manton, and William Shieh
Opt. Express 27(25) 36953-36964 (2019)

Cascade recurrent neural network-assisted nonlinear equalization for a 100 Gb/s PAM4 short-reach direct detection system

Zhaopeng Xu, Chuanbowen Sun, Tonghui Ji, Jonathan H. Manton, and William Shieh
Opt. Lett. 45(15) 4216-4219 (2020)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.