Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 41,
  • Issue 9,
  • pp. 2747-2755
  • (2023)

Improved Phase Noise Cancellation Technology for Auxiliary Reference Interferometer Demodulation Scheme

Not Accessible

Your library or personal account may give you access

Abstract

In an unbalanced interferometer, the phase noise level is positively related to the optical path length difference (OPD) and the wavelength instability of the light source. The effective current solution for reducing phase noise is to use an auxiliary reference interferometer to measure the phase noise signal. However, this method requires that all interferometers have the same OPD, otherwise the phase modulation depth of different interferometers with the same light source will be different and the noise reduction effect will be severely reduced. It is difficult to provide interferometers with precisely the same OPD in practical. In this paper, an improved phase-generated carrier (PGC) demodulation technique for phase noise cancellation that does not require strictly equal OPDs of interferometers is proposed. Combining an auxiliary reference interferometer scheme with an ellipse fitting algorithm (EFA) can eliminate the effect of different phase modulation depths due to different OPDs, and phase modulation depth drift on demodulation results, significantly reducing harmonic distortion. The additional phase modulation signal ensures the correct calculation of small signals by the EFA, while the OPDs of the interferometers are evaluated in real time to achieve constant phase noise cancellation capability under different OPD. Experimental results show that the proposed technique achieves a highly stable phase demodulation result with a maximum phase noise reduction of about 9 dB and a minimum THD of −74.59 dB in interferometers with non-strict equal OPD.

PDF Article
More Like This
High-stability PGC demodulation technique with an additional sinusoidal modulation based on an auxiliary reference interferometer and EFA

Shengquan Mu, Benli Yu, Lei Gui, Jinhui Shi, Dong Guang, Cheng Zuo, Wujun Zhang, Xiaonan Zhao, and Xuqiang Wu
Opt. Express 30(15) 26941-26954 (2022)

Phase noise suppression technique based on an improved reference interferometer scheme

Wen Zhou, Benli Yu, Jihao Zhang, Jinhui Shi, Dong Guang, Cheng Zuo, Shengquan Mu, Chongxu Fang, Daoxin Zhang, Jiping Lin, and Xuqiang Wu
Opt. Express 31(21) 33765-33775 (2023)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.