Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 42,
  • Issue 7,
  • pp. 2317-2327
  • (2024)

Multi-Band ESCL Transmission Supported by Bismuth-Doped and Raman Fiber Amplification

Not Accessible

Your library or personal account may give you access

Abstract

Ultra-wideband transmission utilizesbandwidths beyond the standard C-band to enable significant network capacity upgrades. Upgrading the standard C-band to a C+L-band transmission scenario is already feasible, and exploratory transmission is being performed in the S-, E-, and O-bands to investigate quality of transmission (QoT) impairments in these spectral regions. In this article, experimental transmission through a SCL- and partial E-band spectral region is performed, with use of a hybrid amplifier that exploits discrete Raman amplification for the SCL-bands, and a bismuth-doped fiber amplifier (BDFA) for the E-band. Through this transmission bandwidth, we demonstrate that 36 Tbit/s transmission is possible, with 150 coherent channels over 70 km of standard, single-mode fiber. This result is compared to a wideband physical layer model that considers a realistic full spectral load transmission scenario, where the E-band is occupied by 74 channels, providing a total of 221 channels. This comparison demonstrates that, for both scenarios in this experiment, the greatest impairment is present within the S-band, and the addition of the E-band to a SCL-band scenario has a negligible impact upon the QoT within the C- and L-bands.

PDF Article

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.