Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 42,
  • Issue 7,
  • pp. 2571-2579
  • (2024)

Dual-Polarization Fiber Optic Differential Interferometer for High-Sensitivity Sensing Applications

Not Accessible

Your library or personal account may give you access

Abstract

The fiber optic differential interferometer (FODI) is a sensor capable of direct detection of temporal derivatives of measured physical quantities. However, its phase sensitivity is currently constrained by the presence of relative intensity noise (RIN). In this study, the disruptive effects of RIN are evaluated through theoretical analysis. Based on this analysis, a novel dual-polarization fiber optic differential interferometer (DP-FODI), in which a dual-polarization front-end is integrated with a new differential fiber sensing probe, is proposed. The mechanism for RIN suppression is comprehensively elucidated through theoretical analysis and numerical simulations. In the static self-noise tests of DP-FODI employing a delay fiber length of 2 km, successful RIN suppression is achieved, leading to a 10-fold enhancement of phase sensitivity from $ 1.6\times 10^{-6} \mathrm{rad/\sqrt{Hz}}$ to $1.5\times 10^{-7} \mathrm{rad/\sqrt{Hz}}$ . Furthermore, dynamic experiments were conducted to validate the differential characteristics of DP-FODI, realizing a dynamic range exceeding 106 dB. DP-FODI exhibits significant potential for application in various domains, including strain monitoring and underwater acoustic measurement.

PDF Article

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.