Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 42,
  • Issue 8,
  • pp. 3010-3015
  • (2024)

High-Performance Bimodal Evanescent-Field Sensor With Coherent Phase Readout

Not Accessible

Your library or personal account may give you access

Abstract

By comparing optical signals travelling through a sensing and a reference arm, interferometric photonic sensors achieve remarkable sensitivities and detection limits using simple single-wavelength laser sources. Sensors based on bimodal waveguides can, in principle, provide the same advantages without requiring a reference arm, by comparing the propagation of two modes travelling through a single sensing waveguide. However, typical implementations of bimodal sensors face two challenges: (i) the abrupt mode excitation and recombination at the sensor input and output is inefficient, unbalanced in power and produces spurious reflections that can mask small sensing signals, (ii) the sinusoidal nature of the output signal can lead to ambiguities in the readout. Here we present a spiralled bimodal refractive index sensor with full mode conversion, multiplexing and demultiplexing and a coherent phase detection, providing an unambiguous linear phase readout with a compact and robust layout. Our sensors have been designed for a 1550 nm central wavelength, fabricated on a silicon nitride platform and validated with bulk sensing experiments, achieving a limit of detection of $\mathbf {1.67\cdot 10^{-7}\,\text{RIU}}$ .

PDF Article

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.