Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Near Infrared Spectroscopy
  • Vol. 24,
  • Issue 5,
  • pp. 473-483
  • (2016)

Using Field-Derived Hyperspectral Reflectance Measurement to Identify the Essential Wavelengths for Predicting Nitrogen Uptake of Rice at Panicle Initiation

Not Accessible

Your library or personal account may give you access

Abstract

Rice growers are reluctant to physically sample their crops, with many relying on visual estimates of crop nitrogen status to determine mid-season nitrogen topdressing requirements. There is increased interest in using remote sensing to determine how accurately mid-season rice crop nitrogen status (nitrogen concentration and content in shoots) can be predicted. Field-derived hyperspectral reflectance measurements were collected over three seasons to evaluate the optimal wavelengths for the prediction of in-crop nitrogen at panicle initiation. Rice plots were planted and differing nitrogen rates applied to establish a range of crop nitrogen uptake levels at the panicle initiation stage of crop development. Hyperspectral canopy reflectance (350–2500 nm) data were collected from each plot at the panicle initiation growth stage and plant samples were collected at each scanning location. Calibration models were developed for plant nitrogen concentration, dry matter and nitrogen uptake using partial least squares regression and the influential wavelengths used in the nitrogen uptake prediction model identified. When the nitrogen uptake model, which included samples collected in three crop seasons, was used to predict nitrogen uptake in an independent set of samples, r2 was 0.84 and the root-mean-square error of prediction (RMSEP) was 16.5 kg N ha−1. The important wavelengths utilised for predicting nitrogen uptake were determined from the regression coefficients and a new calibration created by multiple linear regression (MLR) using only four wavelengths (738 nm, 1362 nm, 1835 nm and 1859 nm). The MLR calibration using the four wavelengths had a prediction accuracy of r2 = 0.82 and RMSEP = 18.4 kg N ha−1, which shows potential for commercial applications. These findings will encourage the development of a remote sensing method for predicting nitrogen uptake for rice crops using the identified wavelengths in an inexpensive multiband instrument.

© 2016 The Author(s)

PDF Article
More Like This
Potential of spectral ratio indices derived from hyperspectral LiDAR and laser-induced chlorophyll fluorescence spectra on estimating rice leaf nitrogen contents

Lin Du, Shuo Shi, Jian Yang, Wei Wang, Jia Sun, Biwu Cheng, Zhenbing Zhang, and Wei Gong
Opt. Express 25(6) 6539-6549 (2017)

Estimating the leaf nitrogen content of paddy rice by using the combined reflectance and laser-induced fluorescence spectra

Jian Yang, Lin Du, Jia Sun, Zhenbing Zhang, Biwu Chen, Shuo Shi, Wei Gong, and Shalei Song
Opt. Express 24(17) 19354-19365 (2016)

Automatic estimation of rice grain number based on a convolutional neural network

Ruoling Deng, Long Qi, Weijie Pan, Zhiqi Wang, Dengbin Fu, and Xiuli Yang
J. Opt. Soc. Am. A 39(6) 1034-1044 (2022)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.