Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Near Infrared Spectroscopy
  • Vol. 24,
  • Issue 6,
  • pp. 485-505
  • (2016)

Assessing Trees, Wood and Derived Products with near Infrared Spectroscopy: Hints and Tips

Not Accessible

Your library or personal account may give you access

Abstract

Wood is a renewable and valuable resource for a variety of end-use application areas. However, rapid and reliable assessments are needed to identify the quality of the tree, timber or wood product at all stages of production and processing. The ideal technology for assessing wood and wood products must provide reliable data, be user-friendly, cost-competitive and provide a rapid analysis. The ultimate application of near infrared (NIR) spectroscopy of wood or wood products is to substitute for costly and time-consuming reference measurements in order to aid process optimisation or determine properties and genetic traits on large numbers of individual samples. Increased interest in the application of NIR spectroscopy in various research fields including wood is observed nowadays. A vast number of publications highlight the potential of NIR spectroscopy for the characterisation of wood in a broad area of uses. The Journal of Near Infrared Spectroscopy has published two special issues on the application of NIR to forestry and wood research in 2010 and 2011 and a recent literature search yielded in excess of 556,000 results which can be easily found by using the search terms “NIR” and “wood”. This mass of published data may suggest that the technique of NIR spectroscopy is widely understood and broadly adopted by the timber industry, but even in recent papers it is evident that there is still a need to better understand the fundamental issues regarding sample selection and preparation, instrument choice, correct measurement and spectral interpretation. In this paper we draw on more than 40 years of collective experience and summarise state-of-the-art knowledge regarding instrumentation, spectral acquisition and data mining in regard to wood science and technology. The goal of this tutorial is two-fold: first, to inform early career wood scientists of the critical steps in utilising NIR spectroscopy to assess the quality of wood. Second, to alert managers to the level of operator skill required for the successful adoption of NIR technology. Some basic information is presented here, but due to the limited size of the manuscript, reference to more specific and detailed literature is provided in each section.

© 2016 The Author(s)

PDF Article
More Like This
Optical properties of drying wood studied by time-resolved near-infrared spectroscopy

Keiji Konagaya, Tetsuya Inagaki, Ryunosuke Kitamura, and Satoru Tsuchikawa
Opt. Express 24(9) 9561-9573 (2016)

Assessment of variations in moisture content of wood using time-resolved diffuse optical spectroscopy

Cosimo D'Andrea, Austin Nevin, Andrea Farina, Andrea Bassi, and Rinaldo Cubeddu
Appl. Opt. 48(4) B87-B93 (2009)

Combination of near-infrared spectroscopy with Wasserstein generative adversarial networks for rapidly detecting raw material quality for formula products

Xiaowei Xin, Junhua Jia, Shunpeng Pang, Ruotong Hu, Huili Gong, Xiaoyan Gao, and Xiangqian Ding
Opt. Express 32(4) 5529-5549 (2024)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.