Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Near Infrared Spectroscopy
  • Vol. 24,
  • Issue 6,
  • pp. 605-616
  • (2016)

Mapping Within-Stem Variation of Chemical Composition by near Infrared Hyperspectral Imaging

Not Accessible

Your library or personal account may give you access

Abstract

A near infrared (NIR) imaging spectrograph was used to generate maps of chemical composition distribution on the surface of transverse wood discs taken from tree stems. The measured chemical components were lignin, galactose, glucose and mannose as well as cellulose and hemicelluloses, which were calculated from monomeric sugars. These components were determined using NIR-based chemistry models, which had been developed specifically for the imaging spectrograph. Explained test-set variation for key constituents ranged between 60% (galactan) and 78% (lignin). Day-to-day variability was 1–2% (standard deviation/range) depending on the chemical property. Various operational parameters such as room temperature, sample temperature, sample surface preparation and sample thickness were found to have a non-negligible, but manageable, influence on predicted results. The influence of room and sample temperatures could be reduced by incorporating temperature changes into the chemistry model. Extractives, transported to, and concentrated at, the disc surface during drying, needed to be physically removed from the surface to avoid an unpredictable influence on chemical results. Wood fibre angles at the disc surface needed to be aligned in a consistent manner to the camera. NIR information was found to derive from a sample depth of up to 10 mm. This distance was consequently chosen as the minimal sample thickness.

© 2016 The Author(s)

PDF Article
More Like This
Broadband near-infrared hyperspectral single pixel imaging for chemical characterization

Paul Gattinger, Jakob Kilgus, Ivan Zorin, Gregor Langer, Ramin Nikzad-Langerodi, Christian Rankl, Martin Gröschl, and Markus Brandstetter
Opt. Express 27(9) 12666-12672 (2019)

Spectral characterization and discrimination of synthetic fibers with near-infrared hyperspectral imaging system

Xiaoke Jin, Hafeezullah Memon, Wei Tian, Qinli Yin, Xiaofang Zhan, and Chengyan Zhu
Appl. Opt. 56(12) 3570-3576 (2017)

Correlative infrared optical coherence tomography and hyperspectral chemical imaging

Ivan Zorin, Rong Su, Bettina Heise, Bernhard Lendl, and Markus Brandstetter
J. Opt. Soc. Am. A 37(9) B19-B26 (2020)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.