Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

The use of two-dimensional spectroscopy to interpret the effect of temperature on the near infrared spectra of whisky

Not Accessible

Your library or personal account may give you access

Abstract

The variations in temperature during the analysis of alcoholic beverages are of importance to develop protocols based on near infrared spectroscopy. The objective of this study was to evaluate the effect of increasing temperature on the near infrared spectra of whisky samples using two-dimensional correlation spectroscopy. Whisky samples from different commercial labels were analyzed at four different temperatures (25°C, 35°C, 45°C, and 55°C) using a UV–VIS–NIR instrument. Asynchronous and synchronous two-dimensional correlation spectroscopy was used to reveal the effect of temperature on the near infrared spectra of the samples. The results of this study indicated that temperatures between 40°C and 55°C alter absorption at specific wavelengths in the near infrared region of the whisky samples analyzed. The combination of near infrared spectroscopy with two-dimensional correlation spectroscopy has the potential to dramatically improve the effciency of analytical laboratories, considering the range of data that can be collected.

© 2020 The Author(s)

PDF Article
More Like This
Near infrared spectroscopic analysis of single malt Scotch whisky on an optofluidic chip

Praveen C. Ashok, Bavishna B. Praveen, and K. Dholakia
Opt. Express 19(23) 22982-22992 (2011)

Easy interpretation of optical two-dimensional correlation spectra

Kees Lazonder, Maxim S. Pshenichnikov, and Douwe A. Wiersma
Opt. Lett. 31(22) 3354-3356 (2006)

Temperature measurements of turbid aqueous solutions using near-infrared spectroscopy

Naoto Kakuta, Hidenobu Arimoto, Hideyuki Momoki, Fuguo Li, and Yukio Yamada
Appl. Opt. 47(13) 2227-2233 (2008)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.