Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Near Infrared Spectroscopy
  • Vol. 6,
  • Issue 1,
  • pp. 41-46
  • (1998)

Non-Traditional Applications of near Infrared Spectroscopy Based on the Optical Characteristic Models for a Biological Material Having Cellular Structure

Not Accessible

Your library or personal account may give you access

Abstract

Non-destructive measurements, based on near infrared (NIR) spectroscopy, on biological material with a cellular structure like wood require a non-traditional approach. We have developed new concepts to model the optical properties of a sample having cellular structure, for the illumination conditions of the spectrometer available to us. A set of optical models, which consisted of the directional characteristics models, the light-path models and the equivalent surface roughness model was proposed to clarify the behaviour of light propagation in a wood sample. Furthermore, the mean optical path length, which was derived by incorporating the nth power cosine model of radiant intensity into the diffusion process model in consideration of the parallel beam component of incident light, was calculated. By introducing the concept of equivalent sample thickness, compatible with the mean optical path length, into the Kubelka–Munk theory, generalised input/output equations for radiation were constructed. In this non-traditional application of NIR spectroscopy, these optical concepts make it possible to analyse both the physical condition and chemical composition of a biological material with a cellular structure.

© 1998 NIR Publications

PDF Article
More Like This
Determination of true optical absorption and scattering coefficient of wooden cell wall substance by time-of-flight near infrared spectroscopy

Ryunosuke Kitamura, Tetsuya Inagaki, and Satoru Tsuchikawa
Opt. Express 24(4) 3999-4009 (2016)

Optical properties of drying wood studied by time-resolved near-infrared spectroscopy

Keiji Konagaya, Tetsuya Inagaki, Ryunosuke Kitamura, and Satoru Tsuchikawa
Opt. Express 24(9) 9561-9573 (2016)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.