Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Near Infrared Spectroscopy
  • Vol. 9,
  • Issue 2,
  • pp. 133-139
  • (2001)

NIR Spectroscopy and Partial Least Squares Regression for the Determination of Phosphate Content and Viscosity Behaviour of Potato Starch

Not Accessible

Your library or personal account may give you access

Abstract

A set of 97 potato starch samples with a phosphate content corresponding to a phosphorus content between 0.029 and 0.11 g per 100 g dry matter was analysed using a Rapid Visco Analyzer (RVA) and near infrared (NIR) spectroscopy, (700–2498 nm). NIR-based prediction of phosphate content was possible with a root mean square error of cross-validation (RMSECV) of 0.006% using PLSR (partial least squares regression). However, the NIR/PLSR model relied on weak spectral signals, and was highly sensitive to sample preparation. The best prediction of phosphate content from the RVA viscograms was a linear regression model based on the RVA variable Breakdown, which gave a RMSECV of 0.008%. NIR/PLSR prediction of the RVA variables Peak viscosity and Breakdown was successful, probably because they were highly related to phosphate content in the present data. Prediction of the other RVA variables from NIR/PLSR was mediocre (Through, Final Viscosity) or not possible (Setback, Peak time, Pasting temperature).

© 2001 NIR Publications

PDF Article
More Like This
Acidity measurement of iron ore powders using laser-induced breakdown spectroscopy with partial least squares regression

Z.Q. Hao, C.M. Li, M. Shen, X.Y. Yang, K.H. Li, L.B. Guo, X.Y. Li, Y.F. Lu, and X.Y. Zeng
Opt. Express 23(6) 7795-7801 (2015)

Partial least squares regression calculation for quantitative analysis of metals submerged in water measured using laser-induced breakdown spectroscopy

Tomoko Takahashi, Blair Thornton, Takumi Sato, Toshihiko Ohki, Koichi Ohki, and Tetsuo Sakka
Appl. Opt. 57(20) 5872-5883 (2018)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.