Abstract
The three dimensional (3-D) extension of the two well-known diffraction tomography algorithms, namely, direct Fourier interpolation (DFI) and filtered backpropagation (FBP), are presented and the problem of the data needed for a full 3-D reconstruction is investigated. These algorithms can be used efficiently to solve the inverse scattering problem for weak scatterers in the frequency domain under the first-order Born and Rytov approximations. Previous attempts of 3-D reconstruction with plane-wave illumination have used data obtained with the incident direction restricted at the plane. However, we show that this restriction results in the omission of the contribution of certain spatial frequencies near the axis for the final reconstruction. The effect of this omission is studied by comparing the results of reconstruction with and without data obtained from other incident directions that fill the spatial frequency domain. We conclude that the use of data obtained for incident direction in only the plane is sufficient to achieve a satisfactory quality of reconstruction for a class of objects presenting smooth variation along the z axis, while abrupt variations along the z axis cannot be imaged. This result should be taken into account in the process of designing the acquisition geometry of a tomography scanner.
© 2005 Optical Society of America
Full Article | PDF ArticleMore Like This
Pengyi Guo and Anthony J. Devaney
J. Opt. Soc. Am. A 22(11) 2338-2347 (2005)
Mark A. Anastasio and Xiaochuan Pan
J. Opt. Soc. Am. A 17(3) 391-400 (2000)
Janice Y. Cheng and Anthony J. Devaney
J. Opt. Soc. Am. A 23(5) 1038-1047 (2006)