Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Decreasing the memory of the discontinuous Galerkin volume integral equation method for scattering from inhomogeneous dielectric objects

Not Accessible

Your library or personal account may give you access

Abstract

A memory-efficient implementation scheme for the discontinuous Galerkin volume integral equation method (DGVIE) using Schaubert–Wilton–Glisson (SWG) basis functions is proposed to analyze electromagnetic scattering from inhomogeneous dielectric objects. For this proposed scheme, almost no half-SWG basis functions are needed for the elements separating nonconformal meshes, while these half-SWG basis functions are indispensable for the conventional DGVIE-SWG method. This is realized by applying the divergence-free condition of the electric displacement vector explicitly for nonconformal meshes separating neighboring subdomains of an inhomogeneous dielectric body. Therefore, the number of unknowns of the conventional DGVIE method can be further reduced. As a result, the memory of the proposed DGVIE method is only about half of the conventional one for inhomogeneous dielectric problems. Meanwhile, the total solution time has been reduced by the use of the proposed scheme. Particularly, the proposed DGVIE-SWG method is efficient in memory usage not only for inhomogeneous dielectric cases with high contrast ratio but also for cases with relatively low contrast ratio.

© 2023 Optica Publishing Group

Full Article  |  PDF Article
More Like This
Discontinuous Galerkin integral equation method for light scattering from complex nanoparticle assemblies

V. F. Martín, D. M. Solís, D. Jericó, L. Landesa, F. Obelleiro, and J. M. Taboada
Opt. Express 31(2) 1034-1048 (2023)

Generalized method of moments: a framework for analyzing scattering from homogeneous dielectric bodies

Naveen V. Nair and Balasubramaniam Shanker
J. Opt. Soc. Am. A 28(3) 328-340 (2011)

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (14)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (3)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (10)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.