Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Breakdown of the isotropy of diffuse radiation as a consequence of its diffraction at multidimensional regular structures

Not Accessible

Your library or personal account may give you access

Abstract

This article is devoted to the results of an experimental test of the theoretical assumption that the basic axiomatic postulate of statistical physics according to which it is equally probable for a closed system to reside in any of the microstates accessible to it may be invalid for nonergodic cases. In the course of photometric experiments for the purpose of recording the predicted loss of isotropy by a diffuse light field when it came into contact with a two-dimensional phase-type diffraction grating, a significant deviation from Lambert's law was detected when the diffuse photon gas was scattered by the grating surface. This caused angular anisotropy of the radiation fluxes to appear in the initially homogeneous light field. These results provide a basis for revising the determination of the most probable macrostate of a closed system.

© 2010 Optical Society of America

PDF Article
More Like This
Condition for far-zone spectral isotropy of light radiated from a quasi-homogeneous source scattering on a quasi-homogeneous random medium

Xinyu Peng, Dong Ye, Munchun Zhou, Yu Xin, and Minmin Song
J. Opt. Soc. Am. A 34(9) 1526-1529 (2017)

Enhancing the isotropy of lateral resolution in coherent structured illumination microscopy

Joo Hyun Park, Jae Yong Lee, and Eun Seong Lee
Biomed. Opt. Express 5(6) 1895-1912 (2014)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.