Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Extreme increase in atomic transition probability of the Cs D2 line in strong magnetic fields under selective reflection

Not Accessible

Your library or personal account may give you access

Abstract

Selective reflection of 852-nm laser radiation from the interface between cesium vapor and the sapphire window of a 30-micrometer-thick microcell was used to record an extreme increase in the probability of the Fg=3→Fe=5 transitions associated with the Cs-atom D2 lines in magnetic fields with inductions ranging from 300 to 3200 Gauss. We showed that a group of seven transitions Fg=3, mF=−3, −2, −1, 0, +1, +2, +3→Fe=5, mF=−2, −1, 0, +1, +2, +3, +4 was formed in accordance with the selection rules ΔmF=+1 for σ+-circularly-polarized radiation. These seven transitions have much higher probabilities in 500–1000 Gauss magnetic fields, with three of the transitions having probabilities higher than all of the other transitions originating from the level Fg=3. In magnetic fields with induction greater than 3000 Gauss, this group of seven transitions at the high-frequency end of the spectrum is completely separate from the group of transitions with Fg=3→Fe=4. Comparison of the frequencies and probabilities of these seven atomic transitions with those for the transitions Fg=3→Fe=5 showed good agreement between theory and experiment. We also discuss potential practical applications for these transitions.

© 2017 Optical Society of America

PDF Article
More Like This
Decoupling of hyperfine structure of Cs D1 line in strong magnetic field studied by selective reflection from a nanocell

Armen Sargsyan, Emmanuel Klinger, Grant Hakhumyan, Ara Tonoyan, Aram Papoyan, Claude Leroy, and David Sarkisyan
J. Opt. Soc. Am. B 34(4) 776-784 (2017)

Saturated-absorption spectroscopy revisited: atomic transitions in strong magnetic fields (>20  mT) with a micrometer-thin cell

A. Sargsyan, A. Tonoyan, R. Mirzoyan, D. Sarkisyan, A. M. Wojciechowski, A. Stabrawa, and W. Gawlik
Opt. Lett. 39(8) 2270-2273 (2014)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.