J. A. Kong, B.-I. Wu, and Y. Zhang, “A unique lateral displacement of a Gaussian beam transmitted through a slab with negative permittivity and permeability,” Microwave Opt. Tech. Lett. 33, 136–139 (2002).
[Crossref]
P. M. Valanju, R. M. Walter, and A. P. Valanju, “Wave refraction in negative-index media: Always positive and very inhomogeneous,” Phys. Rev. Lett. 88, 187401 (2002).
[Crossref]
[PubMed]
G. V. Eleftheriades, A. K. Iyer, and P. C. Kremer, “Planar negative refractive index media using periodically L-C loaded transmission lines,” IEEE Trans. Microwave Theory Tech. 50, 2702–2712 (2002).
[Crossref]
M. W. Feise, P. J. Bevelacqua, and J. B. Schneider, “Effects of surface waves on behavior of perfect lenses,” Phys. Rev. B 66, 035113 (2002).
[Crossref]
A. Grbic and G. V. Eleftheriades, “Experimental verification of backward-wave radiation from a negative refractive index metamaterial,” J. Appl. Phys. 92, 5930–5935 (2002).
[Crossref]
C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, “All-angle negative refraction without negative effective index,” Phys. Rev. B 65, 201104(R) (2002).
[Crossref]
R. A. Shelby, D. R. Smith, S. C. Nemat-Nasser, and S. Schultz, “Microwave transmission through a two-dimensional, isotropic, left-handed metamaterial,” Appl. Phys. Lett. 78, 489–491 (2001).
[Crossref]
A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative refractive index of refraction,” Science 292, 77–79 (2001).
[Crossref]
[PubMed]
R. W. Ziolkowski and E. Heyman, “Wave propagation in media having negative permittivity and permeability,” Phys. Rev. E 64, 056625 (2001).
[Crossref]
C. Caloz, C.-C. Chang, and T. Itoh, “Full-wave verification of the fundamental properties of left-handed materials in waveguide configurations,” J. Appl. Phys. 90, 5483–5486 (2001).
[Crossref]
D. C. Wittwer and R. W. Ziolkowski, “Two time-derivative Lorentz material (2TDLM) formulation of a Maxwellian absorbing layer matched to a lossy media,” IEEE Trans. Antennas and Propagat. 48, 192–199 (2000).
[Crossref]
D. C. Wittwer and R. W. Ziolkowski, “Maxwellian material based absorbing boundary conditions for lossy media in 3D,” IEEE Trans. Antennas and Propagat. 48, 200–213 (2000).
[Crossref]
M. Notomi, “Theory of light propagation in strongly modulated photonic crystals: Refractionlike behavior in the vicinity of the photonic band gap,” Phys. Rev. B 62, 10696 (2000).
[Crossref]
D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite Medium with zimultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
[Crossref]
[PubMed]
J. B. Pendry, “Negative Refraction Makes a Perfect Lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
[Crossref]
[PubMed]
D. R. Smith and N. Kroll, “Negative refractive index in left-handed materials,” Phys. Rev. Lett. 85, 2933–2936 (2000).
[Crossref]
[PubMed]
H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Superprism phenomena in photonic crystals,” Phys. Rev. B 58, R10096–10099 (1998).
[Crossref]
V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and µ,” Sov. Phys. Usp. 10, 509–514 (1968).
[Crossref]
K. G. Balmain, A. A. Luttgen, and P. C. Kremer, “Resonance cone formation, reflection, refraction and focusing in a planar, anisotropic metamaterial,” Proceedings of the URSI National Radio Science Meeting, pp. 45, San Antonio, TX, July 2002.
M. W. Feise, P. J. Bevelacqua, and J. B. Schneider, “Effects of surface waves on behavior of perfect lenses,” Phys. Rev. B 66, 035113 (2002).
[Crossref]
C. Caloz, C.-C. Chang, and T. Itoh, “Full-wave verification of the fundamental properties of left-handed materials in waveguide configurations,” J. Appl. Phys. 90, 5483–5486 (2001).
[Crossref]
C. Caloz, C.-C. Chang, and T. Itoh, “Full-wave verification of the fundamental properties of left-handed materials in waveguide configurations,” J. Appl. Phys. 90, 5483–5486 (2001).
[Crossref]
G. V. Eleftheriades, A. K. Iyer, and P. C. Kremer, “Planar negative refractive index media using periodically L-C loaded transmission lines,” IEEE Trans. Microwave Theory Tech. 50, 2702–2712 (2002).
[Crossref]
A. Grbic and G. V. Eleftheriades, “Experimental verification of backward-wave radiation from a negative refractive index metamaterial,” J. Appl. Phys. 92, 5930–5935 (2002).
[Crossref]
M. W. Feise, P. J. Bevelacqua, and J. B. Schneider, “Effects of surface waves on behavior of perfect lenses,” Phys. Rev. B 66, 035113 (2002).
[Crossref]
A. Grbic and G. V. Eleftheriades, “Experimental verification of backward-wave radiation from a negative refractive index metamaterial,” J. Appl. Phys. 92, 5930–5935 (2002).
[Crossref]
J. B. Judkins, C. W. Haggans, and R. W. Ziolkowski, “2D-FDTD simulation for rewritable optical disk surface structure design,” Special Issue of Applied Optics on Optical Data Storage Technologies, Appl. Opt.35, 2477–2487 (1996).
[Crossref]
[PubMed]
R. W. Ziolkowski and E. Heyman, “Wave propagation in media having negative permittivity and permeability,” Phys. Rev. E 64, 056625 (2001).
[Crossref]
A. Ishimaru, Electromagnetic Wave Propagation, Radiation, and Scattering, (Prentice Hall, Englewood Cliffs, NJ, 1991), pp. 36–38.
A. Ishimaru and J. Thomas, “Transmission and focusing of a slab of negative refractive index,” Proceedings of the URSI National Radio Science Meeting, pp. 43, San Antonio, TX, July 2002.
A. Ishimaru, Electromagnetic Wave Propagation, Radiation, and Scattering, (Prentice Hall, Englewood Cliffs, NJ, 1991), pp. 165–169.
C. Caloz, C.-C. Chang, and T. Itoh, “Full-wave verification of the fundamental properties of left-handed materials in waveguide configurations,” J. Appl. Phys. 90, 5483–5486 (2001).
[Crossref]
G. V. Eleftheriades, A. K. Iyer, and P. C. Kremer, “Planar negative refractive index media using periodically L-C loaded transmission lines,” IEEE Trans. Microwave Theory Tech. 50, 2702–2712 (2002).
[Crossref]
C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, “All-angle negative refraction without negative effective index,” Phys. Rev. B 65, 201104(R) (2002).
[Crossref]
C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, “All-angle negative refraction without negative effective index,” Phys. Rev. B 65, 201104(R) (2002).
[Crossref]
J. B. Judkins, C. W. Haggans, and R. W. Ziolkowski, “2D-FDTD simulation for rewritable optical disk surface structure design,” Special Issue of Applied Optics on Optical Data Storage Technologies, Appl. Opt.35, 2477–2487 (1996).
[Crossref]
[PubMed]
H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Superprism phenomena in photonic crystals,” Phys. Rev. B 58, R10096–10099 (1998).
[Crossref]
H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Superprism phenomena in photonic crystals,” Phys. Rev. B 58, R10096–10099 (1998).
[Crossref]
J. A. Kong, B.-I. Wu, and Y. Zhang, “A unique lateral displacement of a Gaussian beam transmitted through a slab with negative permittivity and permeability,” Microwave Opt. Tech. Lett. 33, 136–139 (2002).
[Crossref]
H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Superprism phenomena in photonic crystals,” Phys. Rev. B 58, R10096–10099 (1998).
[Crossref]
G. V. Eleftheriades, A. K. Iyer, and P. C. Kremer, “Planar negative refractive index media using periodically L-C loaded transmission lines,” IEEE Trans. Microwave Theory Tech. 50, 2702–2712 (2002).
[Crossref]
K. G. Balmain, A. A. Luttgen, and P. C. Kremer, “Resonance cone formation, reflection, refraction and focusing in a planar, anisotropic metamaterial,” Proceedings of the URSI National Radio Science Meeting, pp. 45, San Antonio, TX, July 2002.
D. R. Smith and N. Kroll, “Negative refractive index in left-handed materials,” Phys. Rev. Lett. 85, 2933–2936 (2000).
[Crossref]
[PubMed]
C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, “All-angle negative refraction without negative effective index,” Phys. Rev. B 65, 201104(R) (2002).
[Crossref]
K. G. Balmain, A. A. Luttgen, and P. C. Kremer, “Resonance cone formation, reflection, refraction and focusing in a planar, anisotropic metamaterial,” Proceedings of the URSI National Radio Science Meeting, pp. 45, San Antonio, TX, July 2002.
R. A. Shelby, D. R. Smith, S. C. Nemat-Nasser, and S. Schultz, “Microwave transmission through a two-dimensional, isotropic, left-handed metamaterial,” Appl. Phys. Lett. 78, 489–491 (2001).
[Crossref]
D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite Medium with zimultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
[Crossref]
[PubMed]
M. Notomi, “Theory of light propagation in strongly modulated photonic crystals: Refractionlike behavior in the vicinity of the photonic band gap,” Phys. Rev. B 62, 10696 (2000).
[Crossref]
H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Superprism phenomena in photonic crystals,” Phys. Rev. B 58, R10096–10099 (1998).
[Crossref]
D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite Medium with zimultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
[Crossref]
[PubMed]
C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, “All-angle negative refraction without negative effective index,” Phys. Rev. B 65, 201104(R) (2002).
[Crossref]
J. B. Pendry, “Negative Refraction Makes a Perfect Lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
[Crossref]
[PubMed]
S. Ramo, J. R. Whinnery, and T. Van Duzer, Fields and Waves in Communication Electronics, 3rd ed., Toronto: John Wiley \& Sons, 1994, pp. 257–258.
H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Superprism phenomena in photonic crystals,” Phys. Rev. B 58, R10096–10099 (1998).
[Crossref]
M. W. Feise, P. J. Bevelacqua, and J. B. Schneider, “Effects of surface waves on behavior of perfect lenses,” Phys. Rev. B 66, 035113 (2002).
[Crossref]
R. A. Shelby, D. R. Smith, S. C. Nemat-Nasser, and S. Schultz, “Microwave transmission through a two-dimensional, isotropic, left-handed metamaterial,” Appl. Phys. Lett. 78, 489–491 (2001).
[Crossref]
A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative refractive index of refraction,” Science 292, 77–79 (2001).
[Crossref]
[PubMed]
D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite Medium with zimultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
[Crossref]
[PubMed]
A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative refractive index of refraction,” Science 292, 77–79 (2001).
[Crossref]
[PubMed]
R. A. Shelby, D. R. Smith, S. C. Nemat-Nasser, and S. Schultz, “Microwave transmission through a two-dimensional, isotropic, left-handed metamaterial,” Appl. Phys. Lett. 78, 489–491 (2001).
[Crossref]
R. A. Shelby, D. R. Smith, S. C. Nemat-Nasser, and S. Schultz, “Microwave transmission through a two-dimensional, isotropic, left-handed metamaterial,” Appl. Phys. Lett. 78, 489–491 (2001).
[Crossref]
A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative refractive index of refraction,” Science 292, 77–79 (2001).
[Crossref]
[PubMed]
D. R. Smith and N. Kroll, “Negative refractive index in left-handed materials,” Phys. Rev. Lett. 85, 2933–2936 (2000).
[Crossref]
[PubMed]
D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite Medium with zimultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
[Crossref]
[PubMed]
H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Superprism phenomena in photonic crystals,” Phys. Rev. B 58, R10096–10099 (1998).
[Crossref]
A. Ishimaru and J. Thomas, “Transmission and focusing of a slab of negative refractive index,” Proceedings of the URSI National Radio Science Meeting, pp. 43, San Antonio, TX, July 2002.
H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Superprism phenomena in photonic crystals,” Phys. Rev. B 58, R10096–10099 (1998).
[Crossref]
P. M. Valanju, R. M. Walter, and A. P. Valanju, “Wave refraction in negative-index media: Always positive and very inhomogeneous,” Phys. Rev. Lett. 88, 187401 (2002).
[Crossref]
[PubMed]
P. M. Valanju, R. M. Walter, and A. P. Valanju, “Wave refraction in negative-index media: Always positive and very inhomogeneous,” Phys. Rev. Lett. 88, 187401 (2002).
[Crossref]
[PubMed]
S. Ramo, J. R. Whinnery, and T. Van Duzer, Fields and Waves in Communication Electronics, 3rd ed., Toronto: John Wiley \& Sons, 1994, pp. 257–258.
V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and µ,” Sov. Phys. Usp. 10, 509–514 (1968).
[Crossref]
D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite Medium with zimultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
[Crossref]
[PubMed]
P. M. Valanju, R. M. Walter, and A. P. Valanju, “Wave refraction in negative-index media: Always positive and very inhomogeneous,” Phys. Rev. Lett. 88, 187401 (2002).
[Crossref]
[PubMed]
S. Ramo, J. R. Whinnery, and T. Van Duzer, Fields and Waves in Communication Electronics, 3rd ed., Toronto: John Wiley \& Sons, 1994, pp. 257–258.
D. C. Wittwer and R. W. Ziolkowski, “Maxwellian material based absorbing boundary conditions for lossy media in 3D,” IEEE Trans. Antennas and Propagat. 48, 200–213 (2000).
[Crossref]
D. C. Wittwer and R. W. Ziolkowski, “Two time-derivative Lorentz material (2TDLM) formulation of a Maxwellian absorbing layer matched to a lossy media,” IEEE Trans. Antennas and Propagat. 48, 192–199 (2000).
[Crossref]
J. A. Kong, B.-I. Wu, and Y. Zhang, “A unique lateral displacement of a Gaussian beam transmitted through a slab with negative permittivity and permeability,” Microwave Opt. Tech. Lett. 33, 136–139 (2002).
[Crossref]
J. A. Kong, B.-I. Wu, and Y. Zhang, “A unique lateral displacement of a Gaussian beam transmitted through a slab with negative permittivity and permeability,” Microwave Opt. Tech. Lett. 33, 136–139 (2002).
[Crossref]
R. W. Ziolkowski and E. Heyman, “Wave propagation in media having negative permittivity and permeability,” Phys. Rev. E 64, 056625 (2001).
[Crossref]
D. C. Wittwer and R. W. Ziolkowski, “Two time-derivative Lorentz material (2TDLM) formulation of a Maxwellian absorbing layer matched to a lossy media,” IEEE Trans. Antennas and Propagat. 48, 192–199 (2000).
[Crossref]
D. C. Wittwer and R. W. Ziolkowski, “Maxwellian material based absorbing boundary conditions for lossy media in 3D,” IEEE Trans. Antennas and Propagat. 48, 200–213 (2000).
[Crossref]
J. B. Judkins, C. W. Haggans, and R. W. Ziolkowski, “2D-FDTD simulation for rewritable optical disk surface structure design,” Special Issue of Applied Optics on Optical Data Storage Technologies, Appl. Opt.35, 2477–2487 (1996).
[Crossref]
[PubMed]
R. W. Ziolkowski, “Design, fabrication, and testing of double negative metamaterials,” to appear in IEEE Trans. Antennas Propagat., June 2003.
[Crossref]
R. A. Shelby, D. R. Smith, S. C. Nemat-Nasser, and S. Schultz, “Microwave transmission through a two-dimensional, isotropic, left-handed metamaterial,” Appl. Phys. Lett. 78, 489–491 (2001).
[Crossref]
D. C. Wittwer and R. W. Ziolkowski, “Two time-derivative Lorentz material (2TDLM) formulation of a Maxwellian absorbing layer matched to a lossy media,” IEEE Trans. Antennas and Propagat. 48, 192–199 (2000).
[Crossref]
D. C. Wittwer and R. W. Ziolkowski, “Maxwellian material based absorbing boundary conditions for lossy media in 3D,” IEEE Trans. Antennas and Propagat. 48, 200–213 (2000).
[Crossref]
G. V. Eleftheriades, A. K. Iyer, and P. C. Kremer, “Planar negative refractive index media using periodically L-C loaded transmission lines,” IEEE Trans. Microwave Theory Tech. 50, 2702–2712 (2002).
[Crossref]
C. Caloz, C.-C. Chang, and T. Itoh, “Full-wave verification of the fundamental properties of left-handed materials in waveguide configurations,” J. Appl. Phys. 90, 5483–5486 (2001).
[Crossref]
A. Grbic and G. V. Eleftheriades, “Experimental verification of backward-wave radiation from a negative refractive index metamaterial,” J. Appl. Phys. 92, 5930–5935 (2002).
[Crossref]
J. A. Kong, B.-I. Wu, and Y. Zhang, “A unique lateral displacement of a Gaussian beam transmitted through a slab with negative permittivity and permeability,” Microwave Opt. Tech. Lett. 33, 136–139 (2002).
[Crossref]
M. W. Feise, P. J. Bevelacqua, and J. B. Schneider, “Effects of surface waves on behavior of perfect lenses,” Phys. Rev. B 66, 035113 (2002).
[Crossref]
H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Superprism phenomena in photonic crystals,” Phys. Rev. B 58, R10096–10099 (1998).
[Crossref]
M. Notomi, “Theory of light propagation in strongly modulated photonic crystals: Refractionlike behavior in the vicinity of the photonic band gap,” Phys. Rev. B 62, 10696 (2000).
[Crossref]
C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, “All-angle negative refraction without negative effective index,” Phys. Rev. B 65, 201104(R) (2002).
[Crossref]
R. W. Ziolkowski and E. Heyman, “Wave propagation in media having negative permittivity and permeability,” Phys. Rev. E 64, 056625 (2001).
[Crossref]
P. M. Valanju, R. M. Walter, and A. P. Valanju, “Wave refraction in negative-index media: Always positive and very inhomogeneous,” Phys. Rev. Lett. 88, 187401 (2002).
[Crossref]
[PubMed]
D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite Medium with zimultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
[Crossref]
[PubMed]
J. B. Pendry, “Negative Refraction Makes a Perfect Lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
[Crossref]
[PubMed]
D. R. Smith and N. Kroll, “Negative refractive index in left-handed materials,” Phys. Rev. Lett. 85, 2933–2936 (2000).
[Crossref]
[PubMed]
A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative refractive index of refraction,” Science 292, 77–79 (2001).
[Crossref]
[PubMed]
V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and µ,” Sov. Phys. Usp. 10, 509–514 (1968).
[Crossref]
A. Ishimaru, Electromagnetic Wave Propagation, Radiation, and Scattering, (Prentice Hall, Englewood Cliffs, NJ, 1991), pp. 36–38.
A. Ishimaru and J. Thomas, “Transmission and focusing of a slab of negative refractive index,” Proceedings of the URSI National Radio Science Meeting, pp. 43, San Antonio, TX, July 2002.
J. B. Judkins, C. W. Haggans, and R. W. Ziolkowski, “2D-FDTD simulation for rewritable optical disk surface structure design,” Special Issue of Applied Optics on Optical Data Storage Technologies, Appl. Opt.35, 2477–2487 (1996).
[Crossref]
[PubMed]
K. G. Balmain, A. A. Luttgen, and P. C. Kremer, “Resonance cone formation, reflection, refraction and focusing in a planar, anisotropic metamaterial,” Proceedings of the URSI National Radio Science Meeting, pp. 45, San Antonio, TX, July 2002.
R. W. Ziolkowski, “Design, fabrication, and testing of double negative metamaterials,” to appear in IEEE Trans. Antennas Propagat., June 2003.
[Crossref]
A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method, (Artech House, Inc., Norwood, MA, 1995).
A. Taflove, Ed., Advances in Computational Electrodynamics: The Finite-Difference Time-Domain Method, (Artech House, Inc., Norwood, MA, 1998).
S. Ramo, J. R. Whinnery, and T. Van Duzer, Fields and Waves in Communication Electronics, 3rd ed., Toronto: John Wiley \& Sons, 1994, pp. 257–258.
A. Ishimaru, Electromagnetic Wave Propagation, Radiation, and Scattering, (Prentice Hall, Englewood Cliffs, NJ, 1991), pp. 165–169.