D. Gérard, L. Salomon, F. de Fornel, and A.V. Zayats, “Ridge-enhanced optical transmission through a continuous metal film,” Phys. Rev. B 69, 113405 (2004).
[Crossref]
A.V. Zayats, L. Salomon, and F. de Fornel, “How light gets through periodically nanostructured metal films: a role of surface polaritonic crystals,” J. Microsc. 210, 344–349 (2003).
[Crossref]
[PubMed]
N. Bonod, S. Enoch, P.F. Li, E. Popov, and M. Nevière, “Resonant optical transmission through thin metallic films with and without holes,” Opt. Express 11, 482–490 (2003).
[Crossref]
[PubMed]
A.M. Dykhne, A.K. Sarychev, and V.M. Shalaev, “Resonant transmittance through metal films with fabricated and light-induced modulation,” Phys. Rev. B 67, 195402 (2003).
[Crossref]
A.V. Zayats and I.I. Smolyaninov, “Near-field photonics: surface plasmons polaritons and localized surface plasmons,” J. Opt. A: Pure Appl. Opt. 5, S16–S50 (2003).
[Crossref]
S.A. Darmanyan and A.V. Zayats, “Light tunneling via resonant surface plasmon polariton states and the enhanced transmission of periodically nanostructured metal films: an analytical study,” Phys. Rev. B 67, 035424 (2003).
[Crossref]
M. Kretschmann and A.A. Maradudin, “Band structures of two-dimensional surface-plasmon polaritonic crystals,” Phys. Rev. B 66, 245408 (2002).
[Crossref]
I.I. Smolyaninov, A.V. Zayats, A. Stanishevsky, and C.C. Davis, “Optical control of photon tunneling through an array of nanometer scale cylindrical channels,” Phys. Rev. B 66, 205414 (2002).
[Crossref]
S.I. Bozhevolnyi, J. Erland, K. Leosson, P.M.W. Skovgaard, and J.M. Hvam, “Waveguiding in surface plasmon polariton band gap structures,” Phys. Rev. Lett. 86, 3008–3011 (2001).
[Crossref]
[PubMed]
L. Salomon, F. Grillot, A. V. Zayats, and F. de Fornel, “Near-field distribution of optical transmission of periodic subwavelength holes in a metal film,” Phys. Rev. Lett. 86, 1110–1113 (2001).
[Crossref]
[PubMed]
L. Martin-Moreno, F.J. García-Vidal, H.J. Lezec, K.M. Pellerin, T. Thio, J.B. Pendry, and T.W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
[Crossref]
[PubMed]
T. J. Kim, T. Thio, T. W. Ebbesen, D. E. Grupp, and H. J. Lezec, “Control of optical transmission through metals perforated with subwavelenth holes arrays,” Opt. Lett. 24, 256–258 (1999).
[Crossref]
J. A. Porto, F. J. García-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999).
[Crossref]
U. Schröter and D. Heitmann, “Surface-plasmon-enhanced transmission through metallic gratings,” Phys. Rev. B 58, 15419–15422 (1998).
[Crossref]
T.W. Ebbesen, J. Lezec, H.F. Ghaemi, T. Thio, and P.A. Wolff, “Extraordinary optical transmission through subwavelength hole arrays,” Nature (London) 391, 667–669 (1998).
[Crossref]
H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through sub-wavelength holes,” Phys. Rev. B 58, 6779–6782 (1998).
[Crossref]
W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B 54, 6227–6244 (1996).
[Crossref]
W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B 54, 6227–6244 (1996).
[Crossref]
S.I. Bozhevolnyi, J. Erland, K. Leosson, P.M.W. Skovgaard, and J.M. Hvam, “Waveguiding in surface plasmon polariton band gap structures,” Phys. Rev. Lett. 86, 3008–3011 (2001).
[Crossref]
[PubMed]
S.A. Darmanyan and A.V. Zayats, “Light tunneling via resonant surface plasmon polariton states and the enhanced transmission of periodically nanostructured metal films: an analytical study,” Phys. Rev. B 67, 035424 (2003).
[Crossref]
S.A. Darmanyan, M. Nevière, and A.V. Zayats, “Analytical theory of optical transmission through periodically structured metal films via tunnel-coupled surface polariton modes,” Phys. Rev. B70, 15AUG (2004).
[Crossref]
I.I. Smolyaninov, A.V. Zayats, A. Stanishevsky, and C.C. Davis, “Optical control of photon tunneling through an array of nanometer scale cylindrical channels,” Phys. Rev. B 66, 205414 (2002).
[Crossref]
D. Gérard, L. Salomon, F. de Fornel, and A.V. Zayats, “Ridge-enhanced optical transmission through a continuous metal film,” Phys. Rev. B 69, 113405 (2004).
[Crossref]
A.V. Zayats, L. Salomon, and F. de Fornel, “How light gets through periodically nanostructured metal films: a role of surface polaritonic crystals,” J. Microsc. 210, 344–349 (2003).
[Crossref]
[PubMed]
L. Salomon, F. Grillot, A. V. Zayats, and F. de Fornel, “Near-field distribution of optical transmission of periodic subwavelength holes in a metal film,” Phys. Rev. Lett. 86, 1110–1113 (2001).
[Crossref]
[PubMed]
A.M. Dykhne, A.K. Sarychev, and V.M. Shalaev, “Resonant transmittance through metal films with fabricated and light-induced modulation,” Phys. Rev. B 67, 195402 (2003).
[Crossref]
T. J. Kim, T. Thio, T. W. Ebbesen, D. E. Grupp, and H. J. Lezec, “Control of optical transmission through metals perforated with subwavelenth holes arrays,” Opt. Lett. 24, 256–258 (1999).
[Crossref]
H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through sub-wavelength holes,” Phys. Rev. B 58, 6779–6782 (1998).
[Crossref]
L. Martin-Moreno, F.J. García-Vidal, H.J. Lezec, K.M. Pellerin, T. Thio, J.B. Pendry, and T.W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
[Crossref]
[PubMed]
T.W. Ebbesen, J. Lezec, H.F. Ghaemi, T. Thio, and P.A. Wolff, “Extraordinary optical transmission through subwavelength hole arrays,” Nature (London) 391, 667–669 (1998).
[Crossref]
N. Bonod, S. Enoch, P.F. Li, E. Popov, and M. Nevière, “Resonant optical transmission through thin metallic films with and without holes,” Opt. Express 11, 482–490 (2003).
[Crossref]
[PubMed]
E. Popov, M. Nevière, S. Enoch, and R. Reinisch, “Theory of light transmission through subwavelength periodic hole arrays,” Phys. Rev. B 62, 16100–16108 (2000).
[Crossref]
S.I. Bozhevolnyi, J. Erland, K. Leosson, P.M.W. Skovgaard, and J.M. Hvam, “Waveguiding in surface plasmon polariton band gap structures,” Phys. Rev. Lett. 86, 3008–3011 (2001).
[Crossref]
[PubMed]
J. A. Porto, F. J. García-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999).
[Crossref]
L. Martin-Moreno, F.J. García-Vidal, H.J. Lezec, K.M. Pellerin, T. Thio, J.B. Pendry, and T.W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
[Crossref]
[PubMed]
D. Gérard, L. Salomon, F. de Fornel, and A.V. Zayats, “Ridge-enhanced optical transmission through a continuous metal film,” Phys. Rev. B 69, 113405 (2004).
[Crossref]
H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through sub-wavelength holes,” Phys. Rev. B 58, 6779–6782 (1998).
[Crossref]
T.W. Ebbesen, J. Lezec, H.F. Ghaemi, T. Thio, and P.A. Wolff, “Extraordinary optical transmission through subwavelength hole arrays,” Nature (London) 391, 667–669 (1998).
[Crossref]
L. Salomon, F. Grillot, A. V. Zayats, and F. de Fornel, “Near-field distribution of optical transmission of periodic subwavelength holes in a metal film,” Phys. Rev. Lett. 86, 1110–1113 (2001).
[Crossref]
[PubMed]
T. J. Kim, T. Thio, T. W. Ebbesen, D. E. Grupp, and H. J. Lezec, “Control of optical transmission through metals perforated with subwavelenth holes arrays,” Opt. Lett. 24, 256–258 (1999).
[Crossref]
H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through sub-wavelength holes,” Phys. Rev. B 58, 6779–6782 (1998).
[Crossref]
U. Schröter and D. Heitmann, “Surface-plasmon-enhanced transmission through metallic gratings,” Phys. Rev. B 58, 15419–15422 (1998).
[Crossref]
S.I. Bozhevolnyi, J. Erland, K. Leosson, P.M.W. Skovgaard, and J.M. Hvam, “Waveguiding in surface plasmon polariton band gap structures,” Phys. Rev. Lett. 86, 3008–3011 (2001).
[Crossref]
[PubMed]
W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B 54, 6227–6244 (1996).
[Crossref]
A.V. Krasavin, N.I. Zheludev, and A.V. Zayats, “High-contrast modulation of light with light by control of surface plasmon-polariton wave coupling,” to be published.
M. Kretschmann and A.A. Maradudin, “Band structures of two-dimensional surface-plasmon polaritonic crystals,” Phys. Rev. B 66, 245408 (2002).
[Crossref]
S.I. Bozhevolnyi, J. Erland, K. Leosson, P.M.W. Skovgaard, and J.M. Hvam, “Waveguiding in surface plasmon polariton band gap structures,” Phys. Rev. Lett. 86, 3008–3011 (2001).
[Crossref]
[PubMed]
T. J. Kim, T. Thio, T. W. Ebbesen, D. E. Grupp, and H. J. Lezec, “Control of optical transmission through metals perforated with subwavelenth holes arrays,” Opt. Lett. 24, 256–258 (1999).
[Crossref]
H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through sub-wavelength holes,” Phys. Rev. B 58, 6779–6782 (1998).
[Crossref]
L. Martin-Moreno, F.J. García-Vidal, H.J. Lezec, K.M. Pellerin, T. Thio, J.B. Pendry, and T.W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
[Crossref]
[PubMed]
T.W. Ebbesen, J. Lezec, H.F. Ghaemi, T. Thio, and P.A. Wolff, “Extraordinary optical transmission through subwavelength hole arrays,” Nature (London) 391, 667–669 (1998).
[Crossref]
M. Kretschmann and A.A. Maradudin, “Band structures of two-dimensional surface-plasmon polaritonic crystals,” Phys. Rev. B 66, 245408 (2002).
[Crossref]
L. Martin-Moreno, F.J. García-Vidal, H.J. Lezec, K.M. Pellerin, T. Thio, J.B. Pendry, and T.W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
[Crossref]
[PubMed]
N. Bonod, S. Enoch, P.F. Li, E. Popov, and M. Nevière, “Resonant optical transmission through thin metallic films with and without holes,” Opt. Express 11, 482–490 (2003).
[Crossref]
[PubMed]
E. Popov, M. Nevière, S. Enoch, and R. Reinisch, “Theory of light transmission through subwavelength periodic hole arrays,” Phys. Rev. B 62, 16100–16108 (2000).
[Crossref]
E. Popov and M. Nevière, “Differential theory for diffraction gratings: a new formulation for TM polarization with rapid convergence,” Opt. Lett. 25, 598–600 (2000).
[Crossref]
M. Nevière and E. Popov, Light Propagation in Periodic Media: Differential Theory and Design, Marcel Dekker, New-York, 2003.
S.A. Darmanyan, M. Nevière, and A.V. Zayats, “Analytical theory of optical transmission through periodically structured metal films via tunnel-coupled surface polariton modes,” Phys. Rev. B70, 15AUG (2004).
[Crossref]
L. Martin-Moreno, F.J. García-Vidal, H.J. Lezec, K.M. Pellerin, T. Thio, J.B. Pendry, and T.W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
[Crossref]
[PubMed]
J. A. Porto, F. J. García-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999).
[Crossref]
L. Martin-Moreno, F.J. García-Vidal, H.J. Lezec, K.M. Pellerin, T. Thio, J.B. Pendry, and T.W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
[Crossref]
[PubMed]
N. Bonod, S. Enoch, P.F. Li, E. Popov, and M. Nevière, “Resonant optical transmission through thin metallic films with and without holes,” Opt. Express 11, 482–490 (2003).
[Crossref]
[PubMed]
E. Popov, M. Nevière, S. Enoch, and R. Reinisch, “Theory of light transmission through subwavelength periodic hole arrays,” Phys. Rev. B 62, 16100–16108 (2000).
[Crossref]
E. Popov and M. Nevière, “Differential theory for diffraction gratings: a new formulation for TM polarization with rapid convergence,” Opt. Lett. 25, 598–600 (2000).
[Crossref]
M. Nevière and E. Popov, Light Propagation in Periodic Media: Differential Theory and Design, Marcel Dekker, New-York, 2003.
J. A. Porto, F. J. García-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999).
[Crossref]
W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B 54, 6227–6244 (1996).
[Crossref]
H. Raether, Surface Plasmons, Springer-Verlag, Berlin, 1988.
E. Popov, M. Nevière, S. Enoch, and R. Reinisch, “Theory of light transmission through subwavelength periodic hole arrays,” Phys. Rev. B 62, 16100–16108 (2000).
[Crossref]
D. Gérard, L. Salomon, F. de Fornel, and A.V. Zayats, “Ridge-enhanced optical transmission through a continuous metal film,” Phys. Rev. B 69, 113405 (2004).
[Crossref]
A.V. Zayats, L. Salomon, and F. de Fornel, “How light gets through periodically nanostructured metal films: a role of surface polaritonic crystals,” J. Microsc. 210, 344–349 (2003).
[Crossref]
[PubMed]
L. Salomon, F. Grillot, A. V. Zayats, and F. de Fornel, “Near-field distribution of optical transmission of periodic subwavelength holes in a metal film,” Phys. Rev. Lett. 86, 1110–1113 (2001).
[Crossref]
[PubMed]
W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B 54, 6227–6244 (1996).
[Crossref]
A.M. Dykhne, A.K. Sarychev, and V.M. Shalaev, “Resonant transmittance through metal films with fabricated and light-induced modulation,” Phys. Rev. B 67, 195402 (2003).
[Crossref]
U. Schröter and D. Heitmann, “Surface-plasmon-enhanced transmission through metallic gratings,” Phys. Rev. B 58, 15419–15422 (1998).
[Crossref]
A.M. Dykhne, A.K. Sarychev, and V.M. Shalaev, “Resonant transmittance through metal films with fabricated and light-induced modulation,” Phys. Rev. B 67, 195402 (2003).
[Crossref]
S.I. Bozhevolnyi, J. Erland, K. Leosson, P.M.W. Skovgaard, and J.M. Hvam, “Waveguiding in surface plasmon polariton band gap structures,” Phys. Rev. Lett. 86, 3008–3011 (2001).
[Crossref]
[PubMed]
A.V. Zayats and I.I. Smolyaninov, “Near-field photonics: surface plasmons polaritons and localized surface plasmons,” J. Opt. A: Pure Appl. Opt. 5, S16–S50 (2003).
[Crossref]
I.I. Smolyaninov, A.V. Zayats, A. Stanishevsky, and C.C. Davis, “Optical control of photon tunneling through an array of nanometer scale cylindrical channels,” Phys. Rev. B 66, 205414 (2002).
[Crossref]
I.I. Smolyaninov, A.V. Zayats, A. Stanishevsky, and C.C. Davis, “Optical control of photon tunneling through an array of nanometer scale cylindrical channels,” Phys. Rev. B 66, 205414 (2002).
[Crossref]
L. Martin-Moreno, F.J. García-Vidal, H.J. Lezec, K.M. Pellerin, T. Thio, J.B. Pendry, and T.W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
[Crossref]
[PubMed]
T. J. Kim, T. Thio, T. W. Ebbesen, D. E. Grupp, and H. J. Lezec, “Control of optical transmission through metals perforated with subwavelenth holes arrays,” Opt. Lett. 24, 256–258 (1999).
[Crossref]
H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through sub-wavelength holes,” Phys. Rev. B 58, 6779–6782 (1998).
[Crossref]
T.W. Ebbesen, J. Lezec, H.F. Ghaemi, T. Thio, and P.A. Wolff, “Extraordinary optical transmission through subwavelength hole arrays,” Nature (London) 391, 667–669 (1998).
[Crossref]
T.W. Ebbesen, J. Lezec, H.F. Ghaemi, T. Thio, and P.A. Wolff, “Extraordinary optical transmission through subwavelength hole arrays,” Nature (London) 391, 667–669 (1998).
[Crossref]
L. Salomon, F. Grillot, A. V. Zayats, and F. de Fornel, “Near-field distribution of optical transmission of periodic subwavelength holes in a metal film,” Phys. Rev. Lett. 86, 1110–1113 (2001).
[Crossref]
[PubMed]
D. Gérard, L. Salomon, F. de Fornel, and A.V. Zayats, “Ridge-enhanced optical transmission through a continuous metal film,” Phys. Rev. B 69, 113405 (2004).
[Crossref]
A.V. Zayats, L. Salomon, and F. de Fornel, “How light gets through periodically nanostructured metal films: a role of surface polaritonic crystals,” J. Microsc. 210, 344–349 (2003).
[Crossref]
[PubMed]
S.A. Darmanyan and A.V. Zayats, “Light tunneling via resonant surface plasmon polariton states and the enhanced transmission of periodically nanostructured metal films: an analytical study,” Phys. Rev. B 67, 035424 (2003).
[Crossref]
A.V. Zayats and I.I. Smolyaninov, “Near-field photonics: surface plasmons polaritons and localized surface plasmons,” J. Opt. A: Pure Appl. Opt. 5, S16–S50 (2003).
[Crossref]
I.I. Smolyaninov, A.V. Zayats, A. Stanishevsky, and C.C. Davis, “Optical control of photon tunneling through an array of nanometer scale cylindrical channels,” Phys. Rev. B 66, 205414 (2002).
[Crossref]
S.A. Darmanyan, M. Nevière, and A.V. Zayats, “Analytical theory of optical transmission through periodically structured metal films via tunnel-coupled surface polariton modes,” Phys. Rev. B70, 15AUG (2004).
[Crossref]
A.V. Krasavin, N.I. Zheludev, and A.V. Zayats, “High-contrast modulation of light with light by control of surface plasmon-polariton wave coupling,” to be published.
A.V. Krasavin, N.I. Zheludev, and A.V. Zayats, “High-contrast modulation of light with light by control of surface plasmon-polariton wave coupling,” to be published.
A.V. Zayats, L. Salomon, and F. de Fornel, “How light gets through periodically nanostructured metal films: a role of surface polaritonic crystals,” J. Microsc. 210, 344–349 (2003).
[Crossref]
[PubMed]
A.V. Zayats and I.I. Smolyaninov, “Near-field photonics: surface plasmons polaritons and localized surface plasmons,” J. Opt. A: Pure Appl. Opt. 5, S16–S50 (2003).
[Crossref]
T.W. Ebbesen, J. Lezec, H.F. Ghaemi, T. Thio, and P.A. Wolff, “Extraordinary optical transmission through subwavelength hole arrays,” Nature (London) 391, 667–669 (1998).
[Crossref]
T. J. Kim, T. Thio, T. W. Ebbesen, D. E. Grupp, and H. J. Lezec, “Control of optical transmission through metals perforated with subwavelenth holes arrays,” Opt. Lett. 24, 256–258 (1999).
[Crossref]
E. Popov and M. Nevière, “Differential theory for diffraction gratings: a new formulation for TM polarization with rapid convergence,” Opt. Lett. 25, 598–600 (2000).
[Crossref]
E. Popov, M. Nevière, S. Enoch, and R. Reinisch, “Theory of light transmission through subwavelength periodic hole arrays,” Phys. Rev. B 62, 16100–16108 (2000).
[Crossref]
U. Schröter and D. Heitmann, “Surface-plasmon-enhanced transmission through metallic gratings,” Phys. Rev. B 58, 15419–15422 (1998).
[Crossref]
A.M. Dykhne, A.K. Sarychev, and V.M. Shalaev, “Resonant transmittance through metal films with fabricated and light-induced modulation,” Phys. Rev. B 67, 195402 (2003).
[Crossref]
D. Gérard, L. Salomon, F. de Fornel, and A.V. Zayats, “Ridge-enhanced optical transmission through a continuous metal film,” Phys. Rev. B 69, 113405 (2004).
[Crossref]
H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through sub-wavelength holes,” Phys. Rev. B 58, 6779–6782 (1998).
[Crossref]
W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B 54, 6227–6244 (1996).
[Crossref]
M. Kretschmann and A.A. Maradudin, “Band structures of two-dimensional surface-plasmon polaritonic crystals,” Phys. Rev. B 66, 245408 (2002).
[Crossref]
I.I. Smolyaninov, A.V. Zayats, A. Stanishevsky, and C.C. Davis, “Optical control of photon tunneling through an array of nanometer scale cylindrical channels,” Phys. Rev. B 66, 205414 (2002).
[Crossref]
S.A. Darmanyan and A.V. Zayats, “Light tunneling via resonant surface plasmon polariton states and the enhanced transmission of periodically nanostructured metal films: an analytical study,” Phys. Rev. B 67, 035424 (2003).
[Crossref]
S.I. Bozhevolnyi, J. Erland, K. Leosson, P.M.W. Skovgaard, and J.M. Hvam, “Waveguiding in surface plasmon polariton band gap structures,” Phys. Rev. Lett. 86, 3008–3011 (2001).
[Crossref]
[PubMed]
J. A. Porto, F. J. García-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999).
[Crossref]
L. Salomon, F. Grillot, A. V. Zayats, and F. de Fornel, “Near-field distribution of optical transmission of periodic subwavelength holes in a metal film,” Phys. Rev. Lett. 86, 1110–1113 (2001).
[Crossref]
[PubMed]
L. Martin-Moreno, F.J. García-Vidal, H.J. Lezec, K.M. Pellerin, T. Thio, J.B. Pendry, and T.W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
[Crossref]
[PubMed]
S.A. Darmanyan, M. Nevière, and A.V. Zayats, “Analytical theory of optical transmission through periodically structured metal films via tunnel-coupled surface polariton modes,” Phys. Rev. B70, 15AUG (2004).
[Crossref]
M. Nevière and E. Popov, Light Propagation in Periodic Media: Differential Theory and Design, Marcel Dekker, New-York, 2003.
H. Raether, Surface Plasmons, Springer-Verlag, Berlin, 1988.
A.V. Krasavin, N.I. Zheludev, and A.V. Zayats, “High-contrast modulation of light with light by control of surface plasmon-polariton wave coupling,” to be published.