A. Zrenner, L. V. Butov, M. Hagn, G. Abstreiter, G. Bohm, and G. Weimann, “Quantum dots formed by interface fluctuations in AlAs/GaAs coupled quantum well structures,” Phys. Rev. Lett. 72, 3382 (1994).
[Crossref]
[PubMed]
L. C. Andreani, G. Panzarini, and J. M. Gérard, “Strong-coupling regime for quantum boxes in pillar microcavi-ties: theory,” Phys. Rev. B 60, 13276 (1999).
[Crossref]
A. Imamoglu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum information processing using quantum dots spins and cavity QED,” Phys. Rev. Lett. 83, 4204 (1999).
[Crossref]
C. Z. Peng, T. Yang, X. H. Bao, J. Zhang, X. M. Jin, F. Y. Feng, B. Yang, J. Yang, J. Yin, Q. Zhang, N. Li, B. L. Tian, and J. W. Pan, “Experimental free-space distribution of entangled photon pairs over 13 km: towards satellite-based global quantum communication,” Phys. Rev. Lett. 94, 150501 (2005).
[Crossref]
[PubMed]
T. M. Stace, G. J. Milburn, and C. H. W. Barnes, “Entangled two-photon source using biexciton emission of an asymmetric quantum dot in a cavity,” Phys. Rev. B 67, 085317 (2003).
[Crossref]
M. Bayer and A. Forchel, “Temperature dependence of the exciton homogeneous linewidth in In0.6Ga0.4As/GaAs self-assembled quantum dots,” Phys. Rev. B 65, 041308(R) (2002).
[Crossref]
Z. Yuan, B. E. Kardynal, R. M. Stevenson, A. J. Shields, C. J. Lobo, K. Cooper, N. S. Beattie, D. A. Ritchie, and M. Pepper, “Electrically driven single-photon source,” Science 295, 102 (2002).
[Crossref]
C. H. Bennett, G. Brassard, and A. Eckert, “Quantum cryptography,” Sci. Am. 267, 50 (1992).
[Crossref]
S. Bhongale, M. Holland, and M. G. Raymer, “Quantum dot quantum computing: non-paraxial eigenmodes of microcavity,” presented at the APS 34th Meeting of the Division of AMO Physics, Boulder, CO, 20-24 May 2003.
E. Pazy, E. Biolatti, T. Calarco, I. D’Amico, P. Zanardi, F. Rossi, and P. Zoller, “Spin-based optical quantum computation vis Pauli blocking in semiconductor quantum dots,” Europhys. Lett. 62, 175 (2003).
[Crossref]
K. J. Resch, M. Lindenthal, B. Blauensteiner, H. R. Böhm, A. Fedrizzi, C. Kurtsiefer, A. Poppe, T. Schmitt-Manderbach, M. Taraba, R. Ursin, P. Walther, H. Weier, H. Weinfurter, and A. Zeilinger, “Distributing entanglement and single photons through an intra-city, free-space quantum channel,” Opt. Express 13, 202 (2005).
[Crossref]
[PubMed]
E. Peter, P. Senellart, D. Martrou, A. Lemaitre, J. Hours, J. M. Gérard, and J. Bloch, “Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity,” Phys. Rev. Lett. 95, 067401 (2005).
[Crossref]
[PubMed]
J. McKeever, A. Boca, A. D. Boozer, R. Miller, J. R. Buck, A. Kuzmich, and H. J. Kimble, “Deterministic generation of single photons from one atom trapped in a cavity,” Science 303, 1992 (2004).
[Crossref]
[PubMed]
A. Zrenner, L. V. Butov, M. Hagn, G. Abstreiter, G. Bohm, and G. Weimann, “Quantum dots formed by interface fluctuations in AlAs/GaAs coupled quantum well structures,” Phys. Rev. Lett. 72, 3382 (1994).
[Crossref]
[PubMed]
K. J. Resch, M. Lindenthal, B. Blauensteiner, H. R. Böhm, A. Fedrizzi, C. Kurtsiefer, A. Poppe, T. Schmitt-Manderbach, M. Taraba, R. Ursin, P. Walther, H. Weier, H. Weinfurter, and A. Zeilinger, “Distributing entanglement and single photons through an intra-city, free-space quantum channel,” Opt. Express 13, 202 (2005).
[Crossref]
[PubMed]
J. McKeever, A. Boca, A. D. Boozer, R. Miller, J. R. Buck, A. Kuzmich, and H. J. Kimble, “Deterministic generation of single photons from one atom trapped in a cavity,” Science 303, 1992 (2004).
[Crossref]
[PubMed]
M. Born and E. Wolf, in Principles of Optics (7th Ed.), (Cambridge University Press, New York, 1999) pp. 338-340.
D. Bouwmeester, A. Ekert, and A. Zeilinger, in The Physics of Quantum Information (Springer, Berlin, 2000).
C. H. Bennett, G. Brassard, and A. Eckert, “Quantum cryptography,” Sci. Am. 267, 50 (1992).
[Crossref]
G. Rempe, R. J. Thompson, R. J. Brecha, W. D. Lee, and H. J. Kimble, “Optical bistability and photon statistics in cavity quantum electrodynamics,” Phys. Rev. Lett. 67, 1727 (1991).
[Crossref]
[PubMed]
M. Brune, J. M. Raimond, P. Goy, L. Davidovich, and S. Haroche, “Realization of a two-photon maser oscillator,” Phys. Rev. Lett. 59, 1899 (1987).
[Crossref]
[PubMed]
J. McKeever, A. Boca, A. D. Boozer, R. Miller, J. R. Buck, A. Kuzmich, and H. J. Kimble, “Deterministic generation of single photons from one atom trapped in a cavity,” Science 303, 1992 (2004).
[Crossref]
[PubMed]
A. Imamoglu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum information processing using quantum dots spins and cavity QED,” Phys. Rev. Lett. 83, 4204 (1999).
[Crossref]
A. Zrenner, L. V. Butov, M. Hagn, G. Abstreiter, G. Bohm, and G. Weimann, “Quantum dots formed by interface fluctuations in AlAs/GaAs coupled quantum well structures,” Phys. Rev. Lett. 72, 3382 (1994).
[Crossref]
[PubMed]
E. Pazy, E. Biolatti, T. Calarco, I. D’Amico, P. Zanardi, F. Rossi, and P. Zoller, “Spin-based optical quantum computation vis Pauli blocking in semiconductor quantum dots,” Europhys. Lett. 62, 175 (2003).
[Crossref]
P. R. Rice and H. J. Carmichael, “Photon statistics of a cavity-QED laser: a comment on the laser-phase-transition analogy,” Phys. Rev. A 50, 4318 (1994).
[Crossref]
[PubMed]
D. J. Heinzen, J. J. Childs, J. E. Thomas, and M. S. Feld, “Enhanced and inhibited visible spontaneous emission by atoms in a confocal resonator,” Phys. Rev. Lett. 58, 1320 (1987).
[Crossref]
[PubMed]
T. Pellizzari, S. Gardiner, J. Cirac, and P. Zoller, “Decoherence, continous obervation, and quantum computing: a cavity QED model,” Phys. Rev. Lett. 75, 3788 (1995).
[Crossref]
[PubMed]
J. I. Cirac, P. Zoller, H. J. Kimble, and H. Mabuchi, “Quantum state transfer and entanglement distribution among distant nodes in a quantum network,” Phys. Rev. Lett. 78, 3221 (1997).
[Crossref]
Z. Yuan, B. E. Kardynal, R. M. Stevenson, A. J. Shields, C. J. Lobo, K. Cooper, N. S. Beattie, D. A. Ritchie, and M. Pepper, “Electrically driven single-photon source,” Science 295, 102 (2002).
[Crossref]
X. Fan, T. Takagahara, J. E. Cunningham, and H. Wang, “Pure dephasing induced by exciton-phonon interactions in narrow GaAs quantum wells,” Solid State Commun. 108, 857 (1998).
[Crossref]
M. Trupke, E. A. Hinds, S. Eriksson, and E. A. Curtis, “Microfabricated high-finesse optical cavity with open access and small volume,” arXiv:quant-ph/0506234 (2005).
E. Pazy, E. Biolatti, T. Calarco, I. D’Amico, P. Zanardi, F. Rossi, and P. Zoller, “Spin-based optical quantum computation vis Pauli blocking in semiconductor quantum dots,” Europhys. Lett. 62, 175 (2003).
[Crossref]
M. Brune, J. M. Raimond, P. Goy, L. Davidovich, and S. Haroche, “Realization of a two-photon maser oscillator,” Phys. Rev. Lett. 59, 1899 (1987).
[Crossref]
[PubMed]
F. De Martini, G. Innocenti, G. R. Jacobovitz, and P. Mataloni, “Anomalous spontaneous emission time in a microscopic optical cavity,” Phys. Rev. Lett. 59, 2955 (1987).
[Crossref]
[PubMed]
T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200 (2004).
[Crossref]
[PubMed]
R. J. Hughes, J. E. Nordholt, D. Derkacs, and C. G. Peterson, “Practical free-space quantum key distribution over 10 km in daylight and at night,” New J. Phys. 4, (2002).
[Crossref]
A. Imamoglu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum information processing using quantum dots spins and cavity QED,” Phys. Rev. Lett. 83, 4204 (1999).
[Crossref]
H. Mabuchi and A. C. Doherty, “Cavity quantum electrodynamics: coherence in context,” Science 298, 1372 (2002).
[Crossref]
[PubMed]
P. D. Drummond, “Optical bistability in a radially varying mode,” IEEE J. Quantum Electron. QE–17, 301 (1981).
[Crossref]
C. H. Bennett, G. Brassard, and A. Eckert, “Quantum cryptography,” Sci. Am. 267, 50 (1992).
[Crossref]
D. Bouwmeester, A. Ekert, and A. Zeilinger, in The Physics of Quantum Information (Springer, Berlin, 2000).
T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200 (2004).
[Crossref]
[PubMed]
M. Trupke, E. A. Hinds, S. Eriksson, and E. A. Curtis, “Microfabricated high-finesse optical cavity with open access and small volume,” arXiv:quant-ph/0506234 (2005).
X. Fan, T. Takagahara, J. E. Cunningham, and H. Wang, “Pure dephasing induced by exciton-phonon interactions in narrow GaAs quantum wells,” Solid State Commun. 108, 857 (1998).
[Crossref]
K. J. Resch, M. Lindenthal, B. Blauensteiner, H. R. Böhm, A. Fedrizzi, C. Kurtsiefer, A. Poppe, T. Schmitt-Manderbach, M. Taraba, R. Ursin, P. Walther, H. Weier, H. Weinfurter, and A. Zeilinger, “Distributing entanglement and single photons through an intra-city, free-space quantum channel,” Opt. Express 13, 202 (2005).
[Crossref]
[PubMed]
D. J. Heinzen, J. J. Childs, J. E. Thomas, and M. S. Feld, “Enhanced and inhibited visible spontaneous emission by atoms in a confocal resonator,” Phys. Rev. Lett. 58, 1320 (1987).
[Crossref]
[PubMed]
D. J. Heinzen and M. S. Feld, “Vacuum radiative level shift and spontaneous-emission linewidth of an atom in an optical resonator,” Phys. Rev. Lett. 59, 2623 (1987).
[Crossref]
[PubMed]
C. Z. Peng, T. Yang, X. H. Bao, J. Zhang, X. M. Jin, F. Y. Feng, B. Yang, J. Yang, J. Yin, Q. Zhang, N. Li, B. L. Tian, and J. W. Pan, “Experimental free-space distribution of entangled photon pairs over 13 km: towards satellite-based global quantum communication,” Phys. Rev. Lett. 94, 150501 (2005).
[Crossref]
[PubMed]
J. P. Reithmaier, G. Sek, A. Loffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432, 197 (2004).
[Crossref]
[PubMed]
M. Bayer and A. Forchel, “Temperature dependence of the exciton homogeneous linewidth in In0.6Ga0.4As/GaAs self-assembled quantum dots,” Phys. Rev. B 65, 041308(R) (2002).
[Crossref]
D. H. Foster and J. U. Nöckel, “Methods for 3-d vector microcavity problems involving a planar dielectric mirror,” Opt. Commun. 234, 351 (2004).
[Crossref]
R. P. Stanley, R. Houdré, U. Oesterle, M. Gailhanou, and M. Ilegems, “Ultrahigh finesse microcavity with distributed Bragg reflectors,” Appl. Phys. Lett. 65, 1883 (1994).
[Crossref]
D. Gammon, E. S. Snow, B. V. Shanabrook, D. S. Katzer, and D. Park, “Fine structure splitting in the optical spectra of single GaAs quantum dots,” Phys. Rev. Lett. 76, 3005 (1996).
[Crossref]
[PubMed]
T. Pellizzari, S. Gardiner, J. Cirac, and P. Zoller, “Decoherence, continous obervation, and quantum computing: a cavity QED model,” Phys. Rev. Lett. 75, 3788 (1995).
[Crossref]
[PubMed]
A. Kiraz, C. Reese, B. Gayral, L. Zhang, W. V. Schoenfeld, B. D. Gerardot, P. M. Petroff, E. L. Hu, and A. Imamoglu, “Cavity-quantum electrodynamics with quantum dots,” J. Opt. B: Quantum Semiclass. Opt. 5, 129 (2003).
[Crossref]
E. Peter, P. Senellart, D. Martrou, A. Lemaitre, J. Hours, J. M. Gérard, and J. Bloch, “Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity,” Phys. Rev. Lett. 95, 067401 (2005).
[Crossref]
[PubMed]
L. C. Andreani, G. Panzarini, and J. M. Gérard, “Strong-coupling regime for quantum boxes in pillar microcavi-ties: theory,” Phys. Rev. B 60, 13276 (1999).
[Crossref]
A. Kiraz, C. Reese, B. Gayral, L. Zhang, W. V. Schoenfeld, B. D. Gerardot, P. M. Petroff, E. L. Hu, and A. Imamoglu, “Cavity-quantum electrodynamics with quantum dots,” J. Opt. B: Quantum Semiclass. Opt. 5, 129 (2003).
[Crossref]
T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200 (2004).
[Crossref]
[PubMed]
G. Khitrova, H. M. Gibbs, F. Jahnke, M. Kira, and S. W. Koch, “Nonlinear optics of normal-mode-coupling semiconductor microcavities,” Rev. Mod. Phys. 71, 1591 (1999).
[Crossref]
M. Brune, J. M. Raimond, P. Goy, L. Davidovich, and S. Haroche, “Realization of a two-photon maser oscillator,” Phys. Rev. Lett. 59, 1899 (1987).
[Crossref]
[PubMed]
A. Zrenner, L. V. Butov, M. Hagn, G. Abstreiter, G. Bohm, and G. Weimann, “Quantum dots formed by interface fluctuations in AlAs/GaAs coupled quantum well structures,” Phys. Rev. Lett. 72, 3382 (1994).
[Crossref]
[PubMed]
S. Haroche and D. Kleppner, “Cavity quantum electrodynamics,” Physics Today 42, 24 (1989).
[Crossref]
M. Brune, J. M. Raimond, P. Goy, L. Davidovich, and S. Haroche, “Realization of a two-photon maser oscillator,” Phys. Rev. Lett. 59, 1899 (1987).
[Crossref]
[PubMed]
D. J. Heinzen, J. J. Childs, J. E. Thomas, and M. S. Feld, “Enhanced and inhibited visible spontaneous emission by atoms in a confocal resonator,” Phys. Rev. Lett. 58, 1320 (1987).
[Crossref]
[PubMed]
D. J. Heinzen and M. S. Feld, “Vacuum radiative level shift and spontaneous-emission linewidth of an atom in an optical resonator,” Phys. Rev. Lett. 59, 2623 (1987).
[Crossref]
[PubMed]
T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200 (2004).
[Crossref]
[PubMed]
A. Kuhn, M. Hennrich, and G. Rempe, “Deterministic single-photon source for distributed quantum networking,” Phys. Rev. Lett. 89, 067901 (2002).
[Crossref]
[PubMed]
R. G. Hulet, E. S. Hilfer, and D. Kleppner, “Inhibited spontaneous emission by a Rydberg atom,” Phys. Rev. Lett. 55, 2137 (1985).
[Crossref]
[PubMed]
M. Trupke, E. A. Hinds, S. Eriksson, and E. A. Curtis, “Microfabricated high-finesse optical cavity with open access and small volume,” arXiv:quant-ph/0506234 (2005).
J. P. Reithmaier, G. Sek, A. Loffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432, 197 (2004).
[Crossref]
[PubMed]
S. Bhongale, M. Holland, and M. G. Raymer, “Quantum dot quantum computing: non-paraxial eigenmodes of microcavity,” presented at the APS 34th Meeting of the Division of AMO Physics, Boulder, CO, 20-24 May 2003.
Q. A. Turchette, C. J. Hood, W. Lange, H. Mabuchi, and H. J. Kimble, “Measurement of conditional phase shifts for quantum logic,” Phys. Rev. Lett. 75, 4710 (1995).
[Crossref]
[PubMed]
R. P. Stanley, R. Houdré, U. Oesterle, M. Gailhanou, and M. Ilegems, “Ultrahigh finesse microcavity with distributed Bragg reflectors,” Appl. Phys. Lett. 65, 1883 (1994).
[Crossref]
E. Peter, P. Senellart, D. Martrou, A. Lemaitre, J. Hours, J. M. Gérard, and J. Bloch, “Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity,” Phys. Rev. Lett. 95, 067401 (2005).
[Crossref]
[PubMed]
A. Kiraz, C. Reese, B. Gayral, L. Zhang, W. V. Schoenfeld, B. D. Gerardot, P. M. Petroff, E. L. Hu, and A. Imamoglu, “Cavity-quantum electrodynamics with quantum dots,” J. Opt. B: Quantum Semiclass. Opt. 5, 129 (2003).
[Crossref]
R. J. Hughes, J. E. Nordholt, D. Derkacs, and C. G. Peterson, “Practical free-space quantum key distribution over 10 km in daylight and at night,” New J. Phys. 4, (2002).
[Crossref]
R. G. Hulet, E. S. Hilfer, and D. Kleppner, “Inhibited spontaneous emission by a Rydberg atom,” Phys. Rev. Lett. 55, 2137 (1985).
[Crossref]
[PubMed]
R. P. Stanley, R. Houdré, U. Oesterle, M. Gailhanou, and M. Ilegems, “Ultrahigh finesse microcavity with distributed Bragg reflectors,” Appl. Phys. Lett. 65, 1883 (1994).
[Crossref]
A. Kiraz, C. Reese, B. Gayral, L. Zhang, W. V. Schoenfeld, B. D. Gerardot, P. M. Petroff, E. L. Hu, and A. Imamoglu, “Cavity-quantum electrodynamics with quantum dots,” J. Opt. B: Quantum Semiclass. Opt. 5, 129 (2003).
[Crossref]
A. Imamoglu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum information processing using quantum dots spins and cavity QED,” Phys. Rev. Lett. 83, 4204 (1999).
[Crossref]
F. De Martini, G. Innocenti, G. R. Jacobovitz, and P. Mataloni, “Anomalous spontaneous emission time in a microscopic optical cavity,” Phys. Rev. Lett. 59, 2955 (1987).
[Crossref]
[PubMed]
F. De Martini, G. Innocenti, G. R. Jacobovitz, and P. Mataloni, “Anomalous spontaneous emission time in a microscopic optical cavity,” Phys. Rev. Lett. 59, 2955 (1987).
[Crossref]
[PubMed]
G. Khitrova, H. M. Gibbs, F. Jahnke, M. Kira, and S. W. Koch, “Nonlinear optics of normal-mode-coupling semiconductor microcavities,” Rev. Mod. Phys. 71, 1591 (1999).
[Crossref]
C. Z. Peng, T. Yang, X. H. Bao, J. Zhang, X. M. Jin, F. Y. Feng, B. Yang, J. Yang, J. Yin, Q. Zhang, N. Li, B. L. Tian, and J. W. Pan, “Experimental free-space distribution of entangled photon pairs over 13 km: towards satellite-based global quantum communication,” Phys. Rev. Lett. 94, 150501 (2005).
[Crossref]
[PubMed]
Z. Yuan, B. E. Kardynal, R. M. Stevenson, A. J. Shields, C. J. Lobo, K. Cooper, N. S. Beattie, D. A. Ritchie, and M. Pepper, “Electrically driven single-photon source,” Science 295, 102 (2002).
[Crossref]
D. Gammon, E. S. Snow, B. V. Shanabrook, D. S. Katzer, and D. Park, “Fine structure splitting in the optical spectra of single GaAs quantum dots,” Phys. Rev. Lett. 76, 3005 (1996).
[Crossref]
[PubMed]
J. P. Reithmaier, G. Sek, A. Loffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432, 197 (2004).
[Crossref]
[PubMed]
T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200 (2004).
[Crossref]
[PubMed]
G. Khitrova, H. M. Gibbs, F. Jahnke, M. Kira, and S. W. Koch, “Nonlinear optics of normal-mode-coupling semiconductor microcavities,” Rev. Mod. Phys. 71, 1591 (1999).
[Crossref]
J. McKeever, A. Boca, A. D. Boozer, R. Miller, J. R. Buck, A. Kuzmich, and H. J. Kimble, “Deterministic generation of single photons from one atom trapped in a cavity,” Science 303, 1992 (2004).
[Crossref]
[PubMed]
J. I. Cirac, P. Zoller, H. J. Kimble, and H. Mabuchi, “Quantum state transfer and entanglement distribution among distant nodes in a quantum network,” Phys. Rev. Lett. 78, 3221 (1997).
[Crossref]
Q. A. Turchette, C. J. Hood, W. Lange, H. Mabuchi, and H. J. Kimble, “Measurement of conditional phase shifts for quantum logic,” Phys. Rev. Lett. 75, 4710 (1995).
[Crossref]
[PubMed]
G. Rempe, R. J. Thompson, R. J. Brecha, W. D. Lee, and H. J. Kimble, “Optical bistability and photon statistics in cavity quantum electrodynamics,” Phys. Rev. Lett. 67, 1727 (1991).
[Crossref]
[PubMed]
H. J. Kimble, “Structure and dynamics in cavity quantum electrodynamics,” in Cavity Quantum Electrodynamics, P. Berman ed. (Academic Press, San Diego, 1994), pp. 203-266.
G. Khitrova, H. M. Gibbs, F. Jahnke, M. Kira, and S. W. Koch, “Nonlinear optics of normal-mode-coupling semiconductor microcavities,” Rev. Mod. Phys. 71, 1591 (1999).
[Crossref]
A. Kiraz, C. Reese, B. Gayral, L. Zhang, W. V. Schoenfeld, B. D. Gerardot, P. M. Petroff, E. L. Hu, and A. Imamoglu, “Cavity-quantum electrodynamics with quantum dots,” J. Opt. B: Quantum Semiclass. Opt. 5, 129 (2003).
[Crossref]
S. Haroche and D. Kleppner, “Cavity quantum electrodynamics,” Physics Today 42, 24 (1989).
[Crossref]
R. G. Hulet, E. S. Hilfer, and D. Kleppner, “Inhibited spontaneous emission by a Rydberg atom,” Phys. Rev. Lett. 55, 2137 (1985).
[Crossref]
[PubMed]
G. Khitrova, H. M. Gibbs, F. Jahnke, M. Kira, and S. W. Koch, “Nonlinear optics of normal-mode-coupling semiconductor microcavities,” Rev. Mod. Phys. 71, 1591 (1999).
[Crossref]
A. Kuhn, M. Hennrich, and G. Rempe, “Deterministic single-photon source for distributed quantum networking,” Phys. Rev. Lett. 89, 067901 (2002).
[Crossref]
[PubMed]
J. P. Reithmaier, G. Sek, A. Loffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432, 197 (2004).
[Crossref]
[PubMed]
J. P. Reithmaier, G. Sek, A. Loffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432, 197 (2004).
[Crossref]
[PubMed]
K. J. Resch, M. Lindenthal, B. Blauensteiner, H. R. Böhm, A. Fedrizzi, C. Kurtsiefer, A. Poppe, T. Schmitt-Manderbach, M. Taraba, R. Ursin, P. Walther, H. Weier, H. Weinfurter, and A. Zeilinger, “Distributing entanglement and single photons through an intra-city, free-space quantum channel,” Opt. Express 13, 202 (2005).
[Crossref]
[PubMed]
J. McKeever, A. Boca, A. D. Boozer, R. Miller, J. R. Buck, A. Kuzmich, and H. J. Kimble, “Deterministic generation of single photons from one atom trapped in a cavity,” Science 303, 1992 (2004).
[Crossref]
[PubMed]
Q. A. Turchette, C. J. Hood, W. Lange, H. Mabuchi, and H. J. Kimble, “Measurement of conditional phase shifts for quantum logic,” Phys. Rev. Lett. 75, 4710 (1995).
[Crossref]
[PubMed]
G. Rempe, R. J. Thompson, R. J. Brecha, W. D. Lee, and H. J. Kimble, “Optical bistability and photon statistics in cavity quantum electrodynamics,” Phys. Rev. Lett. 67, 1727 (1991).
[Crossref]
[PubMed]
E. Peter, P. Senellart, D. Martrou, A. Lemaitre, J. Hours, J. M. Gérard, and J. Bloch, “Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity,” Phys. Rev. Lett. 95, 067401 (2005).
[Crossref]
[PubMed]
C. Z. Peng, T. Yang, X. H. Bao, J. Zhang, X. M. Jin, F. Y. Feng, B. Yang, J. Yang, J. Yin, Q. Zhang, N. Li, B. L. Tian, and J. W. Pan, “Experimental free-space distribution of entangled photon pairs over 13 km: towards satellite-based global quantum communication,” Phys. Rev. Lett. 94, 150501 (2005).
[Crossref]
[PubMed]
K. J. Resch, M. Lindenthal, B. Blauensteiner, H. R. Böhm, A. Fedrizzi, C. Kurtsiefer, A. Poppe, T. Schmitt-Manderbach, M. Taraba, R. Ursin, P. Walther, H. Weier, H. Weinfurter, and A. Zeilinger, “Distributing entanglement and single photons through an intra-city, free-space quantum channel,” Opt. Express 13, 202 (2005).
[Crossref]
[PubMed]
Z. Yuan, B. E. Kardynal, R. M. Stevenson, A. J. Shields, C. J. Lobo, K. Cooper, N. S. Beattie, D. A. Ritchie, and M. Pepper, “Electrically driven single-photon source,” Science 295, 102 (2002).
[Crossref]
J. P. Reithmaier, G. Sek, A. Loffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432, 197 (2004).
[Crossref]
[PubMed]
A. Imamoglu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum information processing using quantum dots spins and cavity QED,” Phys. Rev. Lett. 83, 4204 (1999).
[Crossref]
H. Mabuchi and A. C. Doherty, “Cavity quantum electrodynamics: coherence in context,” Science 298, 1372 (2002).
[Crossref]
[PubMed]
J. I. Cirac, P. Zoller, H. J. Kimble, and H. Mabuchi, “Quantum state transfer and entanglement distribution among distant nodes in a quantum network,” Phys. Rev. Lett. 78, 3221 (1997).
[Crossref]
Q. A. Turchette, C. J. Hood, W. Lange, H. Mabuchi, and H. J. Kimble, “Measurement of conditional phase shifts for quantum logic,” Phys. Rev. Lett. 75, 4710 (1995).
[Crossref]
[PubMed]
E. Peter, P. Senellart, D. Martrou, A. Lemaitre, J. Hours, J. M. Gérard, and J. Bloch, “Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity,” Phys. Rev. Lett. 95, 067401 (2005).
[Crossref]
[PubMed]
F. De Martini, G. Innocenti, G. R. Jacobovitz, and P. Mataloni, “Anomalous spontaneous emission time in a microscopic optical cavity,” Phys. Rev. Lett. 59, 2955 (1987).
[Crossref]
[PubMed]
J. McKeever, A. Boca, A. D. Boozer, R. Miller, J. R. Buck, A. Kuzmich, and H. J. Kimble, “Deterministic generation of single photons from one atom trapped in a cavity,” Science 303, 1992 (2004).
[Crossref]
[PubMed]
D. Meschede, H. Walther, and G. Müller, “One-atom maser,” Phys. Rev. Lett. 54, 551 (1985).
[Crossref]
[PubMed]
T. M. Stace, G. J. Milburn, and C. H. W. Barnes, “Entangled two-photon source using biexciton emission of an asymmetric quantum dot in a cavity,” Phys. Rev. B 67, 085317 (2003).
[Crossref]
J. McKeever, A. Boca, A. D. Boozer, R. Miller, J. R. Buck, A. Kuzmich, and H. J. Kimble, “Deterministic generation of single photons from one atom trapped in a cavity,” Science 303, 1992 (2004).
[Crossref]
[PubMed]
S. E. Morin, C. C. Yu, and T. W. Mossberg, ”Strong atom-cavity coupling over large volumes and the observation of subnatural intracavity atomic linewidths,” Phys. Rev. Lett. 73, 1489 (1994).
[Crossref]
[PubMed]
S. E. Morin, C. C. Yu, and T. W. Mossberg, ”Strong atom-cavity coupling over large volumes and the observation of subnatural intracavity atomic linewidths,” Phys. Rev. Lett. 73, 1489 (1994).
[Crossref]
[PubMed]
D. Meschede, H. Walther, and G. Müller, “One-atom maser,” Phys. Rev. Lett. 54, 551 (1985).
[Crossref]
[PubMed]
D. H. Foster and J. U. Nöckel, “Methods for 3-d vector microcavity problems involving a planar dielectric mirror,” Opt. Commun. 234, 351 (2004).
[Crossref]
R. J. Hughes, J. E. Nordholt, D. Derkacs, and C. G. Peterson, “Practical free-space quantum key distribution over 10 km in daylight and at night,” New J. Phys. 4, (2002).
[Crossref]
R. P. Stanley, R. Houdré, U. Oesterle, M. Gailhanou, and M. Ilegems, “Ultrahigh finesse microcavity with distributed Bragg reflectors,” Appl. Phys. Lett. 65, 1883 (1994).
[Crossref]
C. Z. Peng, T. Yang, X. H. Bao, J. Zhang, X. M. Jin, F. Y. Feng, B. Yang, J. Yang, J. Yin, Q. Zhang, N. Li, B. L. Tian, and J. W. Pan, “Experimental free-space distribution of entangled photon pairs over 13 km: towards satellite-based global quantum communication,” Phys. Rev. Lett. 94, 150501 (2005).
[Crossref]
[PubMed]
L. C. Andreani, G. Panzarini, and J. M. Gérard, “Strong-coupling regime for quantum boxes in pillar microcavi-ties: theory,” Phys. Rev. B 60, 13276 (1999).
[Crossref]
D. Gammon, E. S. Snow, B. V. Shanabrook, D. S. Katzer, and D. Park, “Fine structure splitting in the optical spectra of single GaAs quantum dots,” Phys. Rev. Lett. 76, 3005 (1996).
[Crossref]
[PubMed]
E. Pazy, E. Biolatti, T. Calarco, I. D’Amico, P. Zanardi, F. Rossi, and P. Zoller, “Spin-based optical quantum computation vis Pauli blocking in semiconductor quantum dots,” Europhys. Lett. 62, 175 (2003).
[Crossref]
T. Pellizzari, S. Gardiner, J. Cirac, and P. Zoller, “Decoherence, continous obervation, and quantum computing: a cavity QED model,” Phys. Rev. Lett. 75, 3788 (1995).
[Crossref]
[PubMed]
M. Pelton, J. Vuckovic, G. S. Solomon, A. Scherer, and Y. Yamamoto, “Three-dimensionally confined modes in micropost microcavities: quality factors and Purcell factors,” IEEE J. Quantum Electron. 38, 170 (2002).
[Crossref]
J. Vuckovic, M. Pelton, A. Scherer, and Y. Yamamoto, “Optimization of three-dimensional micropost microcav-ities for cavity quantum electrodynamics,” Phys. Rev. A 66, 023808 (2002).
[Crossref]
C. Z. Peng, T. Yang, X. H. Bao, J. Zhang, X. M. Jin, F. Y. Feng, B. Yang, J. Yang, J. Yin, Q. Zhang, N. Li, B. L. Tian, and J. W. Pan, “Experimental free-space distribution of entangled photon pairs over 13 km: towards satellite-based global quantum communication,” Phys. Rev. Lett. 94, 150501 (2005).
[Crossref]
[PubMed]
Z. Yuan, B. E. Kardynal, R. M. Stevenson, A. J. Shields, C. J. Lobo, K. Cooper, N. S. Beattie, D. A. Ritchie, and M. Pepper, “Electrically driven single-photon source,” Science 295, 102 (2002).
[Crossref]
E. Peter, P. Senellart, D. Martrou, A. Lemaitre, J. Hours, J. M. Gérard, and J. Bloch, “Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity,” Phys. Rev. Lett. 95, 067401 (2005).
[Crossref]
[PubMed]
R. J. Hughes, J. E. Nordholt, D. Derkacs, and C. G. Peterson, “Practical free-space quantum key distribution over 10 km in daylight and at night,” New J. Phys. 4, (2002).
[Crossref]
A. Kiraz, C. Reese, B. Gayral, L. Zhang, W. V. Schoenfeld, B. D. Gerardot, P. M. Petroff, E. L. Hu, and A. Imamoglu, “Cavity-quantum electrodynamics with quantum dots,” J. Opt. B: Quantum Semiclass. Opt. 5, 129 (2003).
[Crossref]
K. J. Resch, M. Lindenthal, B. Blauensteiner, H. R. Böhm, A. Fedrizzi, C. Kurtsiefer, A. Poppe, T. Schmitt-Manderbach, M. Taraba, R. Ursin, P. Walther, H. Weier, H. Weinfurter, and A. Zeilinger, “Distributing entanglement and single photons through an intra-city, free-space quantum channel,” Opt. Express 13, 202 (2005).
[Crossref]
[PubMed]
E. M. Purcell, “Spontaneous emission probabilities at radio frequencies (Abstract),” Phys. Rev. 69, 681 (1946).
M. Brune, J. M. Raimond, P. Goy, L. Davidovich, and S. Haroche, “Realization of a two-photon maser oscillator,” Phys. Rev. Lett. 59, 1899 (1987).
[Crossref]
[PubMed]
S. Bhongale, M. Holland, and M. G. Raymer, “Quantum dot quantum computing: non-paraxial eigenmodes of microcavity,” presented at the APS 34th Meeting of the Division of AMO Physics, Boulder, CO, 20-24 May 2003.
A. Kiraz, C. Reese, B. Gayral, L. Zhang, W. V. Schoenfeld, B. D. Gerardot, P. M. Petroff, E. L. Hu, and A. Imamoglu, “Cavity-quantum electrodynamics with quantum dots,” J. Opt. B: Quantum Semiclass. Opt. 5, 129 (2003).
[Crossref]
J. P. Reithmaier, G. Sek, A. Loffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432, 197 (2004).
[Crossref]
[PubMed]
J. P. Reithmaier, G. Sek, A. Loffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432, 197 (2004).
[Crossref]
[PubMed]
J. P. Reithmaier, G. Sek, A. Loffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432, 197 (2004).
[Crossref]
[PubMed]
A. Kuhn, M. Hennrich, and G. Rempe, “Deterministic single-photon source for distributed quantum networking,” Phys. Rev. Lett. 89, 067901 (2002).
[Crossref]
[PubMed]
G. Rempe, R. J. Thompson, R. J. Brecha, W. D. Lee, and H. J. Kimble, “Optical bistability and photon statistics in cavity quantum electrodynamics,” Phys. Rev. Lett. 67, 1727 (1991).
[Crossref]
[PubMed]
K. J. Resch, M. Lindenthal, B. Blauensteiner, H. R. Böhm, A. Fedrizzi, C. Kurtsiefer, A. Poppe, T. Schmitt-Manderbach, M. Taraba, R. Ursin, P. Walther, H. Weier, H. Weinfurter, and A. Zeilinger, “Distributing entanglement and single photons through an intra-city, free-space quantum channel,” Opt. Express 13, 202 (2005).
[Crossref]
[PubMed]
P. R. Rice and H. J. Carmichael, “Photon statistics of a cavity-QED laser: a comment on the laser-phase-transition analogy,” Phys. Rev. A 50, 4318 (1994).
[Crossref]
[PubMed]
Z. Yuan, B. E. Kardynal, R. M. Stevenson, A. J. Shields, C. J. Lobo, K. Cooper, N. S. Beattie, D. A. Ritchie, and M. Pepper, “Electrically driven single-photon source,” Science 295, 102 (2002).
[Crossref]
E. Pazy, E. Biolatti, T. Calarco, I. D’Amico, P. Zanardi, F. Rossi, and P. Zoller, “Spin-based optical quantum computation vis Pauli blocking in semiconductor quantum dots,” Europhys. Lett. 62, 175 (2003).
[Crossref]
T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200 (2004).
[Crossref]
[PubMed]
T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200 (2004).
[Crossref]
[PubMed]
J. Vuckovic, M. Pelton, A. Scherer, and Y. Yamamoto, “Optimization of three-dimensional micropost microcav-ities for cavity quantum electrodynamics,” Phys. Rev. A 66, 023808 (2002).
[Crossref]
M. Pelton, J. Vuckovic, G. S. Solomon, A. Scherer, and Y. Yamamoto, “Three-dimensionally confined modes in micropost microcavities: quality factors and Purcell factors,” IEEE J. Quantum Electron. 38, 170 (2002).
[Crossref]
K. J. Resch, M. Lindenthal, B. Blauensteiner, H. R. Böhm, A. Fedrizzi, C. Kurtsiefer, A. Poppe, T. Schmitt-Manderbach, M. Taraba, R. Ursin, P. Walther, H. Weier, H. Weinfurter, and A. Zeilinger, “Distributing entanglement and single photons through an intra-city, free-space quantum channel,” Opt. Express 13, 202 (2005).
[Crossref]
[PubMed]
A. Kiraz, C. Reese, B. Gayral, L. Zhang, W. V. Schoenfeld, B. D. Gerardot, P. M. Petroff, E. L. Hu, and A. Imamoglu, “Cavity-quantum electrodynamics with quantum dots,” J. Opt. B: Quantum Semiclass. Opt. 5, 129 (2003).
[Crossref]
J. P. Reithmaier, G. Sek, A. Loffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432, 197 (2004).
[Crossref]
[PubMed]
E. Peter, P. Senellart, D. Martrou, A. Lemaitre, J. Hours, J. M. Gérard, and J. Bloch, “Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity,” Phys. Rev. Lett. 95, 067401 (2005).
[Crossref]
[PubMed]
D. Gammon, E. S. Snow, B. V. Shanabrook, D. S. Katzer, and D. Park, “Fine structure splitting in the optical spectra of single GaAs quantum dots,” Phys. Rev. Lett. 76, 3005 (1996).
[Crossref]
[PubMed]
T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200 (2004).
[Crossref]
[PubMed]
A. Imamoglu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum information processing using quantum dots spins and cavity QED,” Phys. Rev. Lett. 83, 4204 (1999).
[Crossref]
Z. Yuan, B. E. Kardynal, R. M. Stevenson, A. J. Shields, C. J. Lobo, K. Cooper, N. S. Beattie, D. A. Ritchie, and M. Pepper, “Electrically driven single-photon source,” Science 295, 102 (2002).
[Crossref]
A. E. Siegman, in Lasers, (University Science Books, Mill Valley, CA, 1986).
Y. Yamamoto and R. E. Slusher, “Optical processes in microcavities,” Phys. Today 46, 66 (1993).
[Crossref]
A. Imamoglu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum information processing using quantum dots spins and cavity QED,” Phys. Rev. Lett. 83, 4204 (1999).
[Crossref]
D. Gammon, E. S. Snow, B. V. Shanabrook, D. S. Katzer, and D. Park, “Fine structure splitting in the optical spectra of single GaAs quantum dots,” Phys. Rev. Lett. 76, 3005 (1996).
[Crossref]
[PubMed]
M. Pelton, J. Vuckovic, G. S. Solomon, A. Scherer, and Y. Yamamoto, “Three-dimensionally confined modes in micropost microcavities: quality factors and Purcell factors,” IEEE J. Quantum Electron. 38, 170 (2002).
[Crossref]
T. M. Stace, G. J. Milburn, and C. H. W. Barnes, “Entangled two-photon source using biexciton emission of an asymmetric quantum dot in a cavity,” Phys. Rev. B 67, 085317 (2003).
[Crossref]
R. P. Stanley, R. Houdré, U. Oesterle, M. Gailhanou, and M. Ilegems, “Ultrahigh finesse microcavity with distributed Bragg reflectors,” Appl. Phys. Lett. 65, 1883 (1994).
[Crossref]
Z. Yuan, B. E. Kardynal, R. M. Stevenson, A. J. Shields, C. J. Lobo, K. Cooper, N. S. Beattie, D. A. Ritchie, and M. Pepper, “Electrically driven single-photon source,” Science 295, 102 (2002).
[Crossref]
X. Fan, T. Takagahara, J. E. Cunningham, and H. Wang, “Pure dephasing induced by exciton-phonon interactions in narrow GaAs quantum wells,” Solid State Commun. 108, 857 (1998).
[Crossref]
K. J. Resch, M. Lindenthal, B. Blauensteiner, H. R. Böhm, A. Fedrizzi, C. Kurtsiefer, A. Poppe, T. Schmitt-Manderbach, M. Taraba, R. Ursin, P. Walther, H. Weier, H. Weinfurter, and A. Zeilinger, “Distributing entanglement and single photons through an intra-city, free-space quantum channel,” Opt. Express 13, 202 (2005).
[Crossref]
[PubMed]
D. J. Heinzen, J. J. Childs, J. E. Thomas, and M. S. Feld, “Enhanced and inhibited visible spontaneous emission by atoms in a confocal resonator,” Phys. Rev. Lett. 58, 1320 (1987).
[Crossref]
[PubMed]
G. Rempe, R. J. Thompson, R. J. Brecha, W. D. Lee, and H. J. Kimble, “Optical bistability and photon statistics in cavity quantum electrodynamics,” Phys. Rev. Lett. 67, 1727 (1991).
[Crossref]
[PubMed]
C. Z. Peng, T. Yang, X. H. Bao, J. Zhang, X. M. Jin, F. Y. Feng, B. Yang, J. Yang, J. Yin, Q. Zhang, N. Li, B. L. Tian, and J. W. Pan, “Experimental free-space distribution of entangled photon pairs over 13 km: towards satellite-based global quantum communication,” Phys. Rev. Lett. 94, 150501 (2005).
[Crossref]
[PubMed]
M. Trupke, E. A. Hinds, S. Eriksson, and E. A. Curtis, “Microfabricated high-finesse optical cavity with open access and small volume,” arXiv:quant-ph/0506234 (2005).
Q. A. Turchette, C. J. Hood, W. Lange, H. Mabuchi, and H. J. Kimble, “Measurement of conditional phase shifts for quantum logic,” Phys. Rev. Lett. 75, 4710 (1995).
[Crossref]
[PubMed]
K. J. Resch, M. Lindenthal, B. Blauensteiner, H. R. Böhm, A. Fedrizzi, C. Kurtsiefer, A. Poppe, T. Schmitt-Manderbach, M. Taraba, R. Ursin, P. Walther, H. Weier, H. Weinfurter, and A. Zeilinger, “Distributing entanglement and single photons through an intra-city, free-space quantum channel,” Opt. Express 13, 202 (2005).
[Crossref]
[PubMed]
M. Pelton, J. Vuckovic, G. S. Solomon, A. Scherer, and Y. Yamamoto, “Three-dimensionally confined modes in micropost microcavities: quality factors and Purcell factors,” IEEE J. Quantum Electron. 38, 170 (2002).
[Crossref]
J. Vuckovic, M. Pelton, A. Scherer, and Y. Yamamoto, “Optimization of three-dimensional micropost microcav-ities for cavity quantum electrodynamics,” Phys. Rev. A 66, 023808 (2002).
[Crossref]
D. Meschede, H. Walther, and G. Müller, “One-atom maser,” Phys. Rev. Lett. 54, 551 (1985).
[Crossref]
[PubMed]
K. J. Resch, M. Lindenthal, B. Blauensteiner, H. R. Böhm, A. Fedrizzi, C. Kurtsiefer, A. Poppe, T. Schmitt-Manderbach, M. Taraba, R. Ursin, P. Walther, H. Weier, H. Weinfurter, and A. Zeilinger, “Distributing entanglement and single photons through an intra-city, free-space quantum channel,” Opt. Express 13, 202 (2005).
[Crossref]
[PubMed]
X. Fan, T. Takagahara, J. E. Cunningham, and H. Wang, “Pure dephasing induced by exciton-phonon interactions in narrow GaAs quantum wells,” Solid State Commun. 108, 857 (1998).
[Crossref]
K. J. Resch, M. Lindenthal, B. Blauensteiner, H. R. Böhm, A. Fedrizzi, C. Kurtsiefer, A. Poppe, T. Schmitt-Manderbach, M. Taraba, R. Ursin, P. Walther, H. Weier, H. Weinfurter, and A. Zeilinger, “Distributing entanglement and single photons through an intra-city, free-space quantum channel,” Opt. Express 13, 202 (2005).
[Crossref]
[PubMed]
A. Zrenner, L. V. Butov, M. Hagn, G. Abstreiter, G. Bohm, and G. Weimann, “Quantum dots formed by interface fluctuations in AlAs/GaAs coupled quantum well structures,” Phys. Rev. Lett. 72, 3382 (1994).
[Crossref]
[PubMed]
K. J. Resch, M. Lindenthal, B. Blauensteiner, H. R. Böhm, A. Fedrizzi, C. Kurtsiefer, A. Poppe, T. Schmitt-Manderbach, M. Taraba, R. Ursin, P. Walther, H. Weier, H. Weinfurter, and A. Zeilinger, “Distributing entanglement and single photons through an intra-city, free-space quantum channel,” Opt. Express 13, 202 (2005).
[Crossref]
[PubMed]
M. Born and E. Wolf, in Principles of Optics (7th Ed.), (Cambridge University Press, New York, 1999) pp. 338-340.
M. Pelton, J. Vuckovic, G. S. Solomon, A. Scherer, and Y. Yamamoto, “Three-dimensionally confined modes in micropost microcavities: quality factors and Purcell factors,” IEEE J. Quantum Electron. 38, 170 (2002).
[Crossref]
J. Vuckovic, M. Pelton, A. Scherer, and Y. Yamamoto, “Optimization of three-dimensional micropost microcav-ities for cavity quantum electrodynamics,” Phys. Rev. A 66, 023808 (2002).
[Crossref]
Y. Yamamoto and R. E. Slusher, “Optical processes in microcavities,” Phys. Today 46, 66 (1993).
[Crossref]
C. Z. Peng, T. Yang, X. H. Bao, J. Zhang, X. M. Jin, F. Y. Feng, B. Yang, J. Yang, J. Yin, Q. Zhang, N. Li, B. L. Tian, and J. W. Pan, “Experimental free-space distribution of entangled photon pairs over 13 km: towards satellite-based global quantum communication,” Phys. Rev. Lett. 94, 150501 (2005).
[Crossref]
[PubMed]
C. Z. Peng, T. Yang, X. H. Bao, J. Zhang, X. M. Jin, F. Y. Feng, B. Yang, J. Yang, J. Yin, Q. Zhang, N. Li, B. L. Tian, and J. W. Pan, “Experimental free-space distribution of entangled photon pairs over 13 km: towards satellite-based global quantum communication,” Phys. Rev. Lett. 94, 150501 (2005).
[Crossref]
[PubMed]
C. Z. Peng, T. Yang, X. H. Bao, J. Zhang, X. M. Jin, F. Y. Feng, B. Yang, J. Yang, J. Yin, Q. Zhang, N. Li, B. L. Tian, and J. W. Pan, “Experimental free-space distribution of entangled photon pairs over 13 km: towards satellite-based global quantum communication,” Phys. Rev. Lett. 94, 150501 (2005).
[Crossref]
[PubMed]
C. Z. Peng, T. Yang, X. H. Bao, J. Zhang, X. M. Jin, F. Y. Feng, B. Yang, J. Yang, J. Yin, Q. Zhang, N. Li, B. L. Tian, and J. W. Pan, “Experimental free-space distribution of entangled photon pairs over 13 km: towards satellite-based global quantum communication,” Phys. Rev. Lett. 94, 150501 (2005).
[Crossref]
[PubMed]
T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200 (2004).
[Crossref]
[PubMed]
S. E. Morin, C. C. Yu, and T. W. Mossberg, ”Strong atom-cavity coupling over large volumes and the observation of subnatural intracavity atomic linewidths,” Phys. Rev. Lett. 73, 1489 (1994).
[Crossref]
[PubMed]
Z. Yuan, B. E. Kardynal, R. M. Stevenson, A. J. Shields, C. J. Lobo, K. Cooper, N. S. Beattie, D. A. Ritchie, and M. Pepper, “Electrically driven single-photon source,” Science 295, 102 (2002).
[Crossref]
E. Pazy, E. Biolatti, T. Calarco, I. D’Amico, P. Zanardi, F. Rossi, and P. Zoller, “Spin-based optical quantum computation vis Pauli blocking in semiconductor quantum dots,” Europhys. Lett. 62, 175 (2003).
[Crossref]
K. J. Resch, M. Lindenthal, B. Blauensteiner, H. R. Böhm, A. Fedrizzi, C. Kurtsiefer, A. Poppe, T. Schmitt-Manderbach, M. Taraba, R. Ursin, P. Walther, H. Weier, H. Weinfurter, and A. Zeilinger, “Distributing entanglement and single photons through an intra-city, free-space quantum channel,” Opt. Express 13, 202 (2005).
[Crossref]
[PubMed]
D. Bouwmeester, A. Ekert, and A. Zeilinger, in The Physics of Quantum Information (Springer, Berlin, 2000).
C. Z. Peng, T. Yang, X. H. Bao, J. Zhang, X. M. Jin, F. Y. Feng, B. Yang, J. Yang, J. Yin, Q. Zhang, N. Li, B. L. Tian, and J. W. Pan, “Experimental free-space distribution of entangled photon pairs over 13 km: towards satellite-based global quantum communication,” Phys. Rev. Lett. 94, 150501 (2005).
[Crossref]
[PubMed]
A. Kiraz, C. Reese, B. Gayral, L. Zhang, W. V. Schoenfeld, B. D. Gerardot, P. M. Petroff, E. L. Hu, and A. Imamoglu, “Cavity-quantum electrodynamics with quantum dots,” J. Opt. B: Quantum Semiclass. Opt. 5, 129 (2003).
[Crossref]
C. Z. Peng, T. Yang, X. H. Bao, J. Zhang, X. M. Jin, F. Y. Feng, B. Yang, J. Yang, J. Yin, Q. Zhang, N. Li, B. L. Tian, and J. W. Pan, “Experimental free-space distribution of entangled photon pairs over 13 km: towards satellite-based global quantum communication,” Phys. Rev. Lett. 94, 150501 (2005).
[Crossref]
[PubMed]
E. Pazy, E. Biolatti, T. Calarco, I. D’Amico, P. Zanardi, F. Rossi, and P. Zoller, “Spin-based optical quantum computation vis Pauli blocking in semiconductor quantum dots,” Europhys. Lett. 62, 175 (2003).
[Crossref]
J. I. Cirac, P. Zoller, H. J. Kimble, and H. Mabuchi, “Quantum state transfer and entanglement distribution among distant nodes in a quantum network,” Phys. Rev. Lett. 78, 3221 (1997).
[Crossref]
T. Pellizzari, S. Gardiner, J. Cirac, and P. Zoller, “Decoherence, continous obervation, and quantum computing: a cavity QED model,” Phys. Rev. Lett. 75, 3788 (1995).
[Crossref]
[PubMed]
A. Zrenner, L. V. Butov, M. Hagn, G. Abstreiter, G. Bohm, and G. Weimann, “Quantum dots formed by interface fluctuations in AlAs/GaAs coupled quantum well structures,” Phys. Rev. Lett. 72, 3382 (1994).
[Crossref]
[PubMed]
R. P. Stanley, R. Houdré, U. Oesterle, M. Gailhanou, and M. Ilegems, “Ultrahigh finesse microcavity with distributed Bragg reflectors,” Appl. Phys. Lett. 65, 1883 (1994).
[Crossref]
E. Pazy, E. Biolatti, T. Calarco, I. D’Amico, P. Zanardi, F. Rossi, and P. Zoller, “Spin-based optical quantum computation vis Pauli blocking in semiconductor quantum dots,” Europhys. Lett. 62, 175 (2003).
[Crossref]
M. Pelton, J. Vuckovic, G. S. Solomon, A. Scherer, and Y. Yamamoto, “Three-dimensionally confined modes in micropost microcavities: quality factors and Purcell factors,” IEEE J. Quantum Electron. 38, 170 (2002).
[Crossref]
P. D. Drummond, “Optical bistability in a radially varying mode,” IEEE J. Quantum Electron. QE–17, 301 (1981).
[Crossref]
A. Kiraz, C. Reese, B. Gayral, L. Zhang, W. V. Schoenfeld, B. D. Gerardot, P. M. Petroff, E. L. Hu, and A. Imamoglu, “Cavity-quantum electrodynamics with quantum dots,” J. Opt. B: Quantum Semiclass. Opt. 5, 129 (2003).
[Crossref]
J. P. Reithmaier, G. Sek, A. Loffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432, 197 (2004).
[Crossref]
[PubMed]
T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200 (2004).
[Crossref]
[PubMed]
R. J. Hughes, J. E. Nordholt, D. Derkacs, and C. G. Peterson, “Practical free-space quantum key distribution over 10 km in daylight and at night,” New J. Phys. 4, (2002).
[Crossref]
D. H. Foster and J. U. Nöckel, “Methods for 3-d vector microcavity problems involving a planar dielectric mirror,” Opt. Commun. 234, 351 (2004).
[Crossref]
K. J. Resch, M. Lindenthal, B. Blauensteiner, H. R. Böhm, A. Fedrizzi, C. Kurtsiefer, A. Poppe, T. Schmitt-Manderbach, M. Taraba, R. Ursin, P. Walther, H. Weier, H. Weinfurter, and A. Zeilinger, “Distributing entanglement and single photons through an intra-city, free-space quantum channel,” Opt. Express 13, 202 (2005).
[Crossref]
[PubMed]
E. M. Purcell, “Spontaneous emission probabilities at radio frequencies (Abstract),” Phys. Rev. 69, 681 (1946).
J. Vuckovic, M. Pelton, A. Scherer, and Y. Yamamoto, “Optimization of three-dimensional micropost microcav-ities for cavity quantum electrodynamics,” Phys. Rev. A 66, 023808 (2002).
[Crossref]
P. R. Rice and H. J. Carmichael, “Photon statistics of a cavity-QED laser: a comment on the laser-phase-transition analogy,” Phys. Rev. A 50, 4318 (1994).
[Crossref]
[PubMed]
L. C. Andreani, G. Panzarini, and J. M. Gérard, “Strong-coupling regime for quantum boxes in pillar microcavi-ties: theory,” Phys. Rev. B 60, 13276 (1999).
[Crossref]
T. M. Stace, G. J. Milburn, and C. H. W. Barnes, “Entangled two-photon source using biexciton emission of an asymmetric quantum dot in a cavity,” Phys. Rev. B 67, 085317 (2003).
[Crossref]
M. Bayer and A. Forchel, “Temperature dependence of the exciton homogeneous linewidth in In0.6Ga0.4As/GaAs self-assembled quantum dots,” Phys. Rev. B 65, 041308(R) (2002).
[Crossref]
E. Peter, P. Senellart, D. Martrou, A. Lemaitre, J. Hours, J. M. Gérard, and J. Bloch, “Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity,” Phys. Rev. Lett. 95, 067401 (2005).
[Crossref]
[PubMed]
R. G. Hulet, E. S. Hilfer, and D. Kleppner, “Inhibited spontaneous emission by a Rydberg atom,” Phys. Rev. Lett. 55, 2137 (1985).
[Crossref]
[PubMed]
F. De Martini, G. Innocenti, G. R. Jacobovitz, and P. Mataloni, “Anomalous spontaneous emission time in a microscopic optical cavity,” Phys. Rev. Lett. 59, 2955 (1987).
[Crossref]
[PubMed]
D. J. Heinzen, J. J. Childs, J. E. Thomas, and M. S. Feld, “Enhanced and inhibited visible spontaneous emission by atoms in a confocal resonator,” Phys. Rev. Lett. 58, 1320 (1987).
[Crossref]
[PubMed]
D. J. Heinzen and M. S. Feld, “Vacuum radiative level shift and spontaneous-emission linewidth of an atom in an optical resonator,” Phys. Rev. Lett. 59, 2623 (1987).
[Crossref]
[PubMed]
S. E. Morin, C. C. Yu, and T. W. Mossberg, ”Strong atom-cavity coupling over large volumes and the observation of subnatural intracavity atomic linewidths,” Phys. Rev. Lett. 73, 1489 (1994).
[Crossref]
[PubMed]
Q. A. Turchette, C. J. Hood, W. Lange, H. Mabuchi, and H. J. Kimble, “Measurement of conditional phase shifts for quantum logic,” Phys. Rev. Lett. 75, 4710 (1995).
[Crossref]
[PubMed]
D. Meschede, H. Walther, and G. Müller, “One-atom maser,” Phys. Rev. Lett. 54, 551 (1985).
[Crossref]
[PubMed]
M. Brune, J. M. Raimond, P. Goy, L. Davidovich, and S. Haroche, “Realization of a two-photon maser oscillator,” Phys. Rev. Lett. 59, 1899 (1987).
[Crossref]
[PubMed]
G. Rempe, R. J. Thompson, R. J. Brecha, W. D. Lee, and H. J. Kimble, “Optical bistability and photon statistics in cavity quantum electrodynamics,” Phys. Rev. Lett. 67, 1727 (1991).
[Crossref]
[PubMed]
T. Pellizzari, S. Gardiner, J. Cirac, and P. Zoller, “Decoherence, continous obervation, and quantum computing: a cavity QED model,” Phys. Rev. Lett. 75, 3788 (1995).
[Crossref]
[PubMed]
J. I. Cirac, P. Zoller, H. J. Kimble, and H. Mabuchi, “Quantum state transfer and entanglement distribution among distant nodes in a quantum network,” Phys. Rev. Lett. 78, 3221 (1997).
[Crossref]
A. Kuhn, M. Hennrich, and G. Rempe, “Deterministic single-photon source for distributed quantum networking,” Phys. Rev. Lett. 89, 067901 (2002).
[Crossref]
[PubMed]
A. Zrenner, L. V. Butov, M. Hagn, G. Abstreiter, G. Bohm, and G. Weimann, “Quantum dots formed by interface fluctuations in AlAs/GaAs coupled quantum well structures,” Phys. Rev. Lett. 72, 3382 (1994).
[Crossref]
[PubMed]
D. Gammon, E. S. Snow, B. V. Shanabrook, D. S. Katzer, and D. Park, “Fine structure splitting in the optical spectra of single GaAs quantum dots,” Phys. Rev. Lett. 76, 3005 (1996).
[Crossref]
[PubMed]
C. Z. Peng, T. Yang, X. H. Bao, J. Zhang, X. M. Jin, F. Y. Feng, B. Yang, J. Yang, J. Yin, Q. Zhang, N. Li, B. L. Tian, and J. W. Pan, “Experimental free-space distribution of entangled photon pairs over 13 km: towards satellite-based global quantum communication,” Phys. Rev. Lett. 94, 150501 (2005).
[Crossref]
[PubMed]
A. Imamoglu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum information processing using quantum dots spins and cavity QED,” Phys. Rev. Lett. 83, 4204 (1999).
[Crossref]
Y. Yamamoto and R. E. Slusher, “Optical processes in microcavities,” Phys. Today 46, 66 (1993).
[Crossref]
S. Haroche and D. Kleppner, “Cavity quantum electrodynamics,” Physics Today 42, 24 (1989).
[Crossref]
G. Khitrova, H. M. Gibbs, F. Jahnke, M. Kira, and S. W. Koch, “Nonlinear optics of normal-mode-coupling semiconductor microcavities,” Rev. Mod. Phys. 71, 1591 (1999).
[Crossref]
C. H. Bennett, G. Brassard, and A. Eckert, “Quantum cryptography,” Sci. Am. 267, 50 (1992).
[Crossref]
H. Mabuchi and A. C. Doherty, “Cavity quantum electrodynamics: coherence in context,” Science 298, 1372 (2002).
[Crossref]
[PubMed]
Z. Yuan, B. E. Kardynal, R. M. Stevenson, A. J. Shields, C. J. Lobo, K. Cooper, N. S. Beattie, D. A. Ritchie, and M. Pepper, “Electrically driven single-photon source,” Science 295, 102 (2002).
[Crossref]
J. McKeever, A. Boca, A. D. Boozer, R. Miller, J. R. Buck, A. Kuzmich, and H. J. Kimble, “Deterministic generation of single photons from one atom trapped in a cavity,” Science 303, 1992 (2004).
[Crossref]
[PubMed]
X. Fan, T. Takagahara, J. E. Cunningham, and H. Wang, “Pure dephasing induced by exciton-phonon interactions in narrow GaAs quantum wells,” Solid State Commun. 108, 857 (1998).
[Crossref]
The coating was made by Spectrum Thin Films Company, New York.
M. Trupke, E. A. Hinds, S. Eriksson, and E. A. Curtis, “Microfabricated high-finesse optical cavity with open access and small volume,” arXiv:quant-ph/0506234 (2005).
A. E. Siegman, in Lasers, (University Science Books, Mill Valley, CA, 1986).
D. Bouwmeester, A. Ekert, and A. Zeilinger, in The Physics of Quantum Information (Springer, Berlin, 2000).
S. Bhongale, M. Holland, and M. G. Raymer, “Quantum dot quantum computing: non-paraxial eigenmodes of microcavity,” presented at the APS 34th Meeting of the Division of AMO Physics, Boulder, CO, 20-24 May 2003.
H. J. Kimble, “Structure and dynamics in cavity quantum electrodynamics,” in Cavity Quantum Electrodynamics, P. Berman ed. (Academic Press, San Diego, 1994), pp. 203-266.
M. Born and E. Wolf, in Principles of Optics (7th Ed.), (Cambridge University Press, New York, 1999) pp. 338-340.