Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

A hemispherical, high-solid-angle optical micro-cavity for cavity-QED studies

Open Access Open Access

Abstract

We report a novel hemispherical micro-cavity that is comprised of a planar integrated semiconductor distributed Bragg reflector (DBR) mirror, and an external, concave micro-mirror having a radius of curvature 50μm. The integrated DBR mirror containing quantum dots (QD), is designed to locate the QDs at an antinode of the field in order to maximize the interaction between the QD and cavity. The concave micro-mirror, with high-reflectivity over a large solid-angle, creates a diffraction-limited (sub-micron) mode-waist at the planar mirror, leading to a large coupling constant between the cavity mode and QD. The half-monolithic design gives more spatial and spectral tuning abilities, relatively to fully monolithic structures. This unique micro-cavity design will potentially enable us to both reach the cavity quantum electrodynamics (QED) strong coupling regime and realize the deterministic generation of single photons on demand.

©2006 Optical Society of America

Full Article  |  PDF Article
More Like This
Cryogenic spectroscopy of ultra-low density colloidal lead chalcogenide quantum dots on chip-scale optical cavities towards single quantum dot near-infrared cavity QED

Ranojoy Bose, Jie Gao, James F. McMillan, Alex D. Williams, and Chee Wei Wong
Opt. Express 17(25) 22474-22483 (2009)

Concave silicon micromirrors for stable hemispherical optical microcavities

Yiliang Bao, Feng Zhou, Thomas W. LeBrun, and Jason J. Gorman
Opt. Express 25(13) 15493-15503 (2017)

Quantum efficiency of single-photon sources in the cavity-QED strong-coupling regime

Guoqiang Cui and M. G. Raymer
Opt. Express 13(24) 9660-9665 (2005)

References

  • View by:

  1. E. M. Purcell, “Spontaneous emission probabilities at radio frequencies (Abstract),” Phys. Rev. 69, 681 (1946).
  2. R. G. Hulet, E. S. Hilfer, and D. Kleppner, “Inhibited spontaneous emission by a Rydberg atom,” Phys. Rev. Lett. 55, 2137 (1985).
    [Crossref] [PubMed]
  3. F. De Martini, G. Innocenti, G. R. Jacobovitz, and P. Mataloni, “Anomalous spontaneous emission time in a microscopic optical cavity,” Phys. Rev. Lett. 59, 2955 (1987).
    [Crossref] [PubMed]
  4. D. J. Heinzen, J. J. Childs, J. E. Thomas, and M. S. Feld, “Enhanced and inhibited visible spontaneous emission by atoms in a confocal resonator,” Phys. Rev. Lett. 58, 1320 (1987).
    [Crossref] [PubMed]
  5. D. J. Heinzen and M. S. Feld, “Vacuum radiative level shift and spontaneous-emission linewidth of an atom in an optical resonator,” Phys. Rev. Lett. 59, 2623 (1987).
    [Crossref] [PubMed]
  6. S. E. Morin, C. C. Yu, and T. W. Mossberg, ”Strong atom-cavity coupling over large volumes and the observation of subnatural intracavity atomic linewidths,” Phys. Rev. Lett. 73, 1489 (1994).
    [Crossref] [PubMed]
  7. Y. Yamamoto and R. E. Slusher, “Optical processes in microcavities,” Phys. Today 46, 66 (1993).
    [Crossref]
  8. P. R. Rice and H. J. Carmichael, “Photon statistics of a cavity-QED laser: a comment on the laser-phase-transition analogy,” Phys. Rev. A 50, 4318 (1994).
    [Crossref] [PubMed]
  9. H. J. Kimble, “Structure and dynamics in cavity quantum electrodynamics,” in Cavity Quantum Electrodynamics, P. Berman ed. (Academic Press, San Diego, 1994), pp. 203-266.
  10. Q. A. Turchette, C. J. Hood, W. Lange, H. Mabuchi, and H. J. Kimble, “Measurement of conditional phase shifts for quantum logic,” Phys. Rev. Lett. 75, 4710 (1995).
    [Crossref] [PubMed]
  11. D. Meschede, H. Walther, and G. Müller, “One-atom maser,” Phys. Rev. Lett. 54, 551 (1985).
    [Crossref] [PubMed]
  12. M. Brune, J. M. Raimond, P. Goy, L. Davidovich, and S. Haroche, “Realization of a two-photon maser oscillator,” Phys. Rev. Lett. 59, 1899 (1987).
    [Crossref] [PubMed]
  13. G. Rempe, R. J. Thompson, R. J. Brecha, W. D. Lee, and H. J. Kimble, “Optical bistability and photon statistics in cavity quantum electrodynamics,” Phys. Rev. Lett. 67, 1727 (1991).
    [Crossref] [PubMed]
  14. S. Haroche and D. Kleppner, “Cavity quantum electrodynamics,” Physics Today 42, 24 (1989).
    [Crossref]
  15. G. Khitrova, H. M. Gibbs, F. Jahnke, M. Kira, and S. W. Koch, “Nonlinear optics of normal-mode-coupling semiconductor microcavities,” Rev. Mod. Phys. 71, 1591 (1999).
    [Crossref]
  16. J. P. Reithmaier, G. Sek, A. Loffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432, 197 (2004).
    [Crossref] [PubMed]
  17. T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200 (2004).
    [Crossref] [PubMed]
  18. E. Peter, P. Senellart, D. Martrou, A. Lemaitre, J. Hours, J. M. Gérard, and J. Bloch, “Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity,” Phys. Rev. Lett. 95, 067401 (2005).
    [Crossref] [PubMed]
  19. Z. Yuan, B. E. Kardynal, R. M. Stevenson, A. J. Shields, C. J. Lobo, K. Cooper, N. S. Beattie, D. A. Ritchie, and M. Pepper, “Electrically driven single-photon source,” Science 295, 102 (2002).
    [Crossref]
  20. X. Fan, T. Takagahara, J. E. Cunningham, and H. Wang, “Pure dephasing induced by exciton-phonon interactions in narrow GaAs quantum wells,” Solid State Commun. 108, 857 (1998).
    [Crossref]
  21. M. Bayer and A. Forchel, “Temperature dependence of the exciton homogeneous linewidth in In0.6Ga0.4As/GaAs self-assembled quantum dots,” Phys. Rev. B 65, 041308(R) (2002).
    [Crossref]
  22. The coating was made by Spectrum Thin Films Company, New York.
  23. M. Trupke, E. A. Hinds, S. Eriksson, and E. A. Curtis, “Microfabricated high-finesse optical cavity with open access and small volume,” arXiv:quant-ph/0506234 (2005).
  24. A. E. Siegman, in Lasers, (University Science Books, Mill Valley, CA, 1986).
  25. P. D. Drummond, “Optical bistability in a radially varying mode,” IEEE J. Quantum Electron. QE–17, 301 (1981).
    [Crossref]
  26. M. Born and E. Wolf, in Principles of Optics (7th Ed.), (Cambridge University Press, New York, 1999) pp. 338-340.
  27. R. P. Stanley, R. Houdré, U. Oesterle, M. Gailhanou, and M. Ilegems, “Ultrahigh finesse microcavity with distributed Bragg reflectors,” Appl. Phys. Lett. 65, 1883 (1994).
    [Crossref]
  28. A. Zrenner, L. V. Butov, M. Hagn, G. Abstreiter, G. Bohm, and G. Weimann, “Quantum dots formed by interface fluctuations in AlAs/GaAs coupled quantum well structures,” Phys. Rev. Lett. 72, 3382 (1994).
    [Crossref] [PubMed]
  29. D. Gammon, E. S. Snow, B. V. Shanabrook, D. S. Katzer, and D. Park, “Fine structure splitting in the optical spectra of single GaAs quantum dots,” Phys. Rev. Lett. 76, 3005 (1996).
    [Crossref] [PubMed]
  30. D. H. Foster and J. U. Nöckel, “Methods for 3-d vector microcavity problems involving a planar dielectric mirror,” Opt. Commun. 234, 351 (2004).
    [Crossref]
  31. M. Pelton, J. Vuckovic, G. S. Solomon, A. Scherer, and Y. Yamamoto, “Three-dimensionally confined modes in micropost microcavities: quality factors and Purcell factors,” IEEE J. Quantum Electron. 38, 170 (2002).
    [Crossref]
  32. S. Bhongale, M. Holland, and M. G. Raymer, “Quantum dot quantum computing: non-paraxial eigenmodes of microcavity,” presented at the APS 34th Meeting of the Division of AMO Physics, Boulder, CO, 20-24 May 2003.
  33. J. Vuckovic, M. Pelton, A. Scherer, and Y. Yamamoto, “Optimization of three-dimensional micropost microcav-ities for cavity quantum electrodynamics,” Phys. Rev. A 66, 023808 (2002).
    [Crossref]
  34. L. C. Andreani, G. Panzarini, and J. M. Gérard, “Strong-coupling regime for quantum boxes in pillar microcavi-ties: theory,” Phys. Rev. B 60, 13276 (1999).
    [Crossref]
  35. T. Pellizzari, S. Gardiner, J. Cirac, and P. Zoller, “Decoherence, continous obervation, and quantum computing: a cavity QED model,” Phys. Rev. Lett. 75, 3788 (1995).
    [Crossref] [PubMed]
  36. J. I. Cirac, P. Zoller, H. J. Kimble, and H. Mabuchi, “Quantum state transfer and entanglement distribution among distant nodes in a quantum network,” Phys. Rev. Lett. 78, 3221 (1997).
    [Crossref]
  37. A. Kuhn, M. Hennrich, and G. Rempe, “Deterministic single-photon source for distributed quantum networking,” Phys. Rev. Lett. 89, 067901 (2002).
    [Crossref] [PubMed]
  38. A. Kiraz, C. Reese, B. Gayral, L. Zhang, W. V. Schoenfeld, B. D. Gerardot, P. M. Petroff, E. L. Hu, and A. Imamoglu, “Cavity-quantum electrodynamics with quantum dots,” J. Opt. B: Quantum Semiclass. Opt. 5, 129 (2003).
    [Crossref]
  39. J. McKeever, A. Boca, A. D. Boozer, R. Miller, J. R. Buck, A. Kuzmich, and H. J. Kimble, “Deterministic generation of single photons from one atom trapped in a cavity,” Science 303, 1992 (2004).
    [Crossref] [PubMed]
  40. T. M. Stace, G. J. Milburn, and C. H. W. Barnes, “Entangled two-photon source using biexciton emission of an asymmetric quantum dot in a cavity,” Phys. Rev. B 67, 085317 (2003).
    [Crossref]
  41. D. Bouwmeester, A. Ekert, and A. Zeilinger, in The Physics of Quantum Information (Springer, Berlin, 2000).
  42. C. H. Bennett, G. Brassard, and A. Eckert, “Quantum cryptography,” Sci. Am. 267, 50 (1992).
    [Crossref]
  43. R. J. Hughes, J. E. Nordholt, D. Derkacs, and C. G. Peterson, “Practical free-space quantum key distribution over 10 km in daylight and at night,” New J. Phys. 4, (2002).
    [Crossref]
  44. K. J. Resch, M. Lindenthal, B. Blauensteiner, H. R. Böhm, A. Fedrizzi, C. Kurtsiefer, A. Poppe, T. Schmitt-Manderbach, M. Taraba, R. Ursin, P. Walther, H. Weier, H. Weinfurter, and A. Zeilinger, “Distributing entanglement and single photons through an intra-city, free-space quantum channel,” Opt. Express 13, 202 (2005).
    [Crossref] [PubMed]
  45. C. Z. Peng, T. Yang, X. H. Bao, J. Zhang, X. M. Jin, F. Y. Feng, B. Yang, J. Yang, J. Yin, Q. Zhang, N. Li, B. L. Tian, and J. W. Pan, “Experimental free-space distribution of entangled photon pairs over 13 km: towards satellite-based global quantum communication,” Phys. Rev. Lett. 94, 150501 (2005).
    [Crossref] [PubMed]
  46. E. Pazy, E. Biolatti, T. Calarco, I. D’Amico, P. Zanardi, F. Rossi, and P. Zoller, “Spin-based optical quantum computation vis Pauli blocking in semiconductor quantum dots,” Europhys. Lett. 62, 175 (2003).
    [Crossref]
  47. H. Mabuchi and A. C. Doherty, “Cavity quantum electrodynamics: coherence in context,” Science 298, 1372 (2002).
    [Crossref] [PubMed]
  48. A. Imamoglu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum information processing using quantum dots spins and cavity QED,” Phys. Rev. Lett. 83, 4204 (1999).
    [Crossref]

2005 (3)

E. Peter, P. Senellart, D. Martrou, A. Lemaitre, J. Hours, J. M. Gérard, and J. Bloch, “Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity,” Phys. Rev. Lett. 95, 067401 (2005).
[Crossref] [PubMed]

K. J. Resch, M. Lindenthal, B. Blauensteiner, H. R. Böhm, A. Fedrizzi, C. Kurtsiefer, A. Poppe, T. Schmitt-Manderbach, M. Taraba, R. Ursin, P. Walther, H. Weier, H. Weinfurter, and A. Zeilinger, “Distributing entanglement and single photons through an intra-city, free-space quantum channel,” Opt. Express 13, 202 (2005).
[Crossref] [PubMed]

C. Z. Peng, T. Yang, X. H. Bao, J. Zhang, X. M. Jin, F. Y. Feng, B. Yang, J. Yang, J. Yin, Q. Zhang, N. Li, B. L. Tian, and J. W. Pan, “Experimental free-space distribution of entangled photon pairs over 13 km: towards satellite-based global quantum communication,” Phys. Rev. Lett. 94, 150501 (2005).
[Crossref] [PubMed]

2004 (4)

J. P. Reithmaier, G. Sek, A. Loffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432, 197 (2004).
[Crossref] [PubMed]

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200 (2004).
[Crossref] [PubMed]

D. H. Foster and J. U. Nöckel, “Methods for 3-d vector microcavity problems involving a planar dielectric mirror,” Opt. Commun. 234, 351 (2004).
[Crossref]

J. McKeever, A. Boca, A. D. Boozer, R. Miller, J. R. Buck, A. Kuzmich, and H. J. Kimble, “Deterministic generation of single photons from one atom trapped in a cavity,” Science 303, 1992 (2004).
[Crossref] [PubMed]

2003 (3)

T. M. Stace, G. J. Milburn, and C. H. W. Barnes, “Entangled two-photon source using biexciton emission of an asymmetric quantum dot in a cavity,” Phys. Rev. B 67, 085317 (2003).
[Crossref]

A. Kiraz, C. Reese, B. Gayral, L. Zhang, W. V. Schoenfeld, B. D. Gerardot, P. M. Petroff, E. L. Hu, and A. Imamoglu, “Cavity-quantum electrodynamics with quantum dots,” J. Opt. B: Quantum Semiclass. Opt. 5, 129 (2003).
[Crossref]

E. Pazy, E. Biolatti, T. Calarco, I. D’Amico, P. Zanardi, F. Rossi, and P. Zoller, “Spin-based optical quantum computation vis Pauli blocking in semiconductor quantum dots,” Europhys. Lett. 62, 175 (2003).
[Crossref]

2002 (7)

H. Mabuchi and A. C. Doherty, “Cavity quantum electrodynamics: coherence in context,” Science 298, 1372 (2002).
[Crossref] [PubMed]

R. J. Hughes, J. E. Nordholt, D. Derkacs, and C. G. Peterson, “Practical free-space quantum key distribution over 10 km in daylight and at night,” New J. Phys. 4, (2002).
[Crossref]

A. Kuhn, M. Hennrich, and G. Rempe, “Deterministic single-photon source for distributed quantum networking,” Phys. Rev. Lett. 89, 067901 (2002).
[Crossref] [PubMed]

M. Pelton, J. Vuckovic, G. S. Solomon, A. Scherer, and Y. Yamamoto, “Three-dimensionally confined modes in micropost microcavities: quality factors and Purcell factors,” IEEE J. Quantum Electron. 38, 170 (2002).
[Crossref]

J. Vuckovic, M. Pelton, A. Scherer, and Y. Yamamoto, “Optimization of three-dimensional micropost microcav-ities for cavity quantum electrodynamics,” Phys. Rev. A 66, 023808 (2002).
[Crossref]

M. Bayer and A. Forchel, “Temperature dependence of the exciton homogeneous linewidth in In0.6Ga0.4As/GaAs self-assembled quantum dots,” Phys. Rev. B 65, 041308(R) (2002).
[Crossref]

Z. Yuan, B. E. Kardynal, R. M. Stevenson, A. J. Shields, C. J. Lobo, K. Cooper, N. S. Beattie, D. A. Ritchie, and M. Pepper, “Electrically driven single-photon source,” Science 295, 102 (2002).
[Crossref]

1999 (3)

L. C. Andreani, G. Panzarini, and J. M. Gérard, “Strong-coupling regime for quantum boxes in pillar microcavi-ties: theory,” Phys. Rev. B 60, 13276 (1999).
[Crossref]

G. Khitrova, H. M. Gibbs, F. Jahnke, M. Kira, and S. W. Koch, “Nonlinear optics of normal-mode-coupling semiconductor microcavities,” Rev. Mod. Phys. 71, 1591 (1999).
[Crossref]

A. Imamoglu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum information processing using quantum dots spins and cavity QED,” Phys. Rev. Lett. 83, 4204 (1999).
[Crossref]

1998 (1)

X. Fan, T. Takagahara, J. E. Cunningham, and H. Wang, “Pure dephasing induced by exciton-phonon interactions in narrow GaAs quantum wells,” Solid State Commun. 108, 857 (1998).
[Crossref]

1997 (1)

J. I. Cirac, P. Zoller, H. J. Kimble, and H. Mabuchi, “Quantum state transfer and entanglement distribution among distant nodes in a quantum network,” Phys. Rev. Lett. 78, 3221 (1997).
[Crossref]

1996 (1)

D. Gammon, E. S. Snow, B. V. Shanabrook, D. S. Katzer, and D. Park, “Fine structure splitting in the optical spectra of single GaAs quantum dots,” Phys. Rev. Lett. 76, 3005 (1996).
[Crossref] [PubMed]

1995 (2)

T. Pellizzari, S. Gardiner, J. Cirac, and P. Zoller, “Decoherence, continous obervation, and quantum computing: a cavity QED model,” Phys. Rev. Lett. 75, 3788 (1995).
[Crossref] [PubMed]

Q. A. Turchette, C. J. Hood, W. Lange, H. Mabuchi, and H. J. Kimble, “Measurement of conditional phase shifts for quantum logic,” Phys. Rev. Lett. 75, 4710 (1995).
[Crossref] [PubMed]

1994 (4)

S. E. Morin, C. C. Yu, and T. W. Mossberg, ”Strong atom-cavity coupling over large volumes and the observation of subnatural intracavity atomic linewidths,” Phys. Rev. Lett. 73, 1489 (1994).
[Crossref] [PubMed]

P. R. Rice and H. J. Carmichael, “Photon statistics of a cavity-QED laser: a comment on the laser-phase-transition analogy,” Phys. Rev. A 50, 4318 (1994).
[Crossref] [PubMed]

R. P. Stanley, R. Houdré, U. Oesterle, M. Gailhanou, and M. Ilegems, “Ultrahigh finesse microcavity with distributed Bragg reflectors,” Appl. Phys. Lett. 65, 1883 (1994).
[Crossref]

A. Zrenner, L. V. Butov, M. Hagn, G. Abstreiter, G. Bohm, and G. Weimann, “Quantum dots formed by interface fluctuations in AlAs/GaAs coupled quantum well structures,” Phys. Rev. Lett. 72, 3382 (1994).
[Crossref] [PubMed]

1993 (1)

Y. Yamamoto and R. E. Slusher, “Optical processes in microcavities,” Phys. Today 46, 66 (1993).
[Crossref]

1992 (1)

C. H. Bennett, G. Brassard, and A. Eckert, “Quantum cryptography,” Sci. Am. 267, 50 (1992).
[Crossref]

1991 (1)

G. Rempe, R. J. Thompson, R. J. Brecha, W. D. Lee, and H. J. Kimble, “Optical bistability and photon statistics in cavity quantum electrodynamics,” Phys. Rev. Lett. 67, 1727 (1991).
[Crossref] [PubMed]

1989 (1)

S. Haroche and D. Kleppner, “Cavity quantum electrodynamics,” Physics Today 42, 24 (1989).
[Crossref]

1987 (4)

M. Brune, J. M. Raimond, P. Goy, L. Davidovich, and S. Haroche, “Realization of a two-photon maser oscillator,” Phys. Rev. Lett. 59, 1899 (1987).
[Crossref] [PubMed]

F. De Martini, G. Innocenti, G. R. Jacobovitz, and P. Mataloni, “Anomalous spontaneous emission time in a microscopic optical cavity,” Phys. Rev. Lett. 59, 2955 (1987).
[Crossref] [PubMed]

D. J. Heinzen, J. J. Childs, J. E. Thomas, and M. S. Feld, “Enhanced and inhibited visible spontaneous emission by atoms in a confocal resonator,” Phys. Rev. Lett. 58, 1320 (1987).
[Crossref] [PubMed]

D. J. Heinzen and M. S. Feld, “Vacuum radiative level shift and spontaneous-emission linewidth of an atom in an optical resonator,” Phys. Rev. Lett. 59, 2623 (1987).
[Crossref] [PubMed]

1985 (2)

R. G. Hulet, E. S. Hilfer, and D. Kleppner, “Inhibited spontaneous emission by a Rydberg atom,” Phys. Rev. Lett. 55, 2137 (1985).
[Crossref] [PubMed]

D. Meschede, H. Walther, and G. Müller, “One-atom maser,” Phys. Rev. Lett. 54, 551 (1985).
[Crossref] [PubMed]

1981 (1)

P. D. Drummond, “Optical bistability in a radially varying mode,” IEEE J. Quantum Electron. QE–17, 301 (1981).
[Crossref]

1946 (1)

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies (Abstract),” Phys. Rev. 69, 681 (1946).

Abstreiter, G.

A. Zrenner, L. V. Butov, M. Hagn, G. Abstreiter, G. Bohm, and G. Weimann, “Quantum dots formed by interface fluctuations in AlAs/GaAs coupled quantum well structures,” Phys. Rev. Lett. 72, 3382 (1994).
[Crossref] [PubMed]

Andreani, L. C.

L. C. Andreani, G. Panzarini, and J. M. Gérard, “Strong-coupling regime for quantum boxes in pillar microcavi-ties: theory,” Phys. Rev. B 60, 13276 (1999).
[Crossref]

Awschalom, D. D.

A. Imamoglu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum information processing using quantum dots spins and cavity QED,” Phys. Rev. Lett. 83, 4204 (1999).
[Crossref]

Bao, X. H.

C. Z. Peng, T. Yang, X. H. Bao, J. Zhang, X. M. Jin, F. Y. Feng, B. Yang, J. Yang, J. Yin, Q. Zhang, N. Li, B. L. Tian, and J. W. Pan, “Experimental free-space distribution of entangled photon pairs over 13 km: towards satellite-based global quantum communication,” Phys. Rev. Lett. 94, 150501 (2005).
[Crossref] [PubMed]

Barnes, C. H. W.

T. M. Stace, G. J. Milburn, and C. H. W. Barnes, “Entangled two-photon source using biexciton emission of an asymmetric quantum dot in a cavity,” Phys. Rev. B 67, 085317 (2003).
[Crossref]

Bayer, M.

M. Bayer and A. Forchel, “Temperature dependence of the exciton homogeneous linewidth in In0.6Ga0.4As/GaAs self-assembled quantum dots,” Phys. Rev. B 65, 041308(R) (2002).
[Crossref]

Beattie, N. S.

Z. Yuan, B. E. Kardynal, R. M. Stevenson, A. J. Shields, C. J. Lobo, K. Cooper, N. S. Beattie, D. A. Ritchie, and M. Pepper, “Electrically driven single-photon source,” Science 295, 102 (2002).
[Crossref]

Bennett, C. H.

C. H. Bennett, G. Brassard, and A. Eckert, “Quantum cryptography,” Sci. Am. 267, 50 (1992).
[Crossref]

Bhongale, S.

S. Bhongale, M. Holland, and M. G. Raymer, “Quantum dot quantum computing: non-paraxial eigenmodes of microcavity,” presented at the APS 34th Meeting of the Division of AMO Physics, Boulder, CO, 20-24 May 2003.

Biolatti, E.

E. Pazy, E. Biolatti, T. Calarco, I. D’Amico, P. Zanardi, F. Rossi, and P. Zoller, “Spin-based optical quantum computation vis Pauli blocking in semiconductor quantum dots,” Europhys. Lett. 62, 175 (2003).
[Crossref]

Blauensteiner, B.

Bloch, J.

E. Peter, P. Senellart, D. Martrou, A. Lemaitre, J. Hours, J. M. Gérard, and J. Bloch, “Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity,” Phys. Rev. Lett. 95, 067401 (2005).
[Crossref] [PubMed]

Boca, A.

J. McKeever, A. Boca, A. D. Boozer, R. Miller, J. R. Buck, A. Kuzmich, and H. J. Kimble, “Deterministic generation of single photons from one atom trapped in a cavity,” Science 303, 1992 (2004).
[Crossref] [PubMed]

Bohm, G.

A. Zrenner, L. V. Butov, M. Hagn, G. Abstreiter, G. Bohm, and G. Weimann, “Quantum dots formed by interface fluctuations in AlAs/GaAs coupled quantum well structures,” Phys. Rev. Lett. 72, 3382 (1994).
[Crossref] [PubMed]

Böhm, H. R.

Boozer, A. D.

J. McKeever, A. Boca, A. D. Boozer, R. Miller, J. R. Buck, A. Kuzmich, and H. J. Kimble, “Deterministic generation of single photons from one atom trapped in a cavity,” Science 303, 1992 (2004).
[Crossref] [PubMed]

Born, M.

M. Born and E. Wolf, in Principles of Optics (7th Ed.), (Cambridge University Press, New York, 1999) pp. 338-340.

Bouwmeester, D.

D. Bouwmeester, A. Ekert, and A. Zeilinger, in The Physics of Quantum Information (Springer, Berlin, 2000).

Brassard, G.

C. H. Bennett, G. Brassard, and A. Eckert, “Quantum cryptography,” Sci. Am. 267, 50 (1992).
[Crossref]

Brecha, R. J.

G. Rempe, R. J. Thompson, R. J. Brecha, W. D. Lee, and H. J. Kimble, “Optical bistability and photon statistics in cavity quantum electrodynamics,” Phys. Rev. Lett. 67, 1727 (1991).
[Crossref] [PubMed]

Brune, M.

M. Brune, J. M. Raimond, P. Goy, L. Davidovich, and S. Haroche, “Realization of a two-photon maser oscillator,” Phys. Rev. Lett. 59, 1899 (1987).
[Crossref] [PubMed]

Buck, J. R.

J. McKeever, A. Boca, A. D. Boozer, R. Miller, J. R. Buck, A. Kuzmich, and H. J. Kimble, “Deterministic generation of single photons from one atom trapped in a cavity,” Science 303, 1992 (2004).
[Crossref] [PubMed]

Burkard, G.

A. Imamoglu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum information processing using quantum dots spins and cavity QED,” Phys. Rev. Lett. 83, 4204 (1999).
[Crossref]

Butov, L. V.

A. Zrenner, L. V. Butov, M. Hagn, G. Abstreiter, G. Bohm, and G. Weimann, “Quantum dots formed by interface fluctuations in AlAs/GaAs coupled quantum well structures,” Phys. Rev. Lett. 72, 3382 (1994).
[Crossref] [PubMed]

Calarco, T.

E. Pazy, E. Biolatti, T. Calarco, I. D’Amico, P. Zanardi, F. Rossi, and P. Zoller, “Spin-based optical quantum computation vis Pauli blocking in semiconductor quantum dots,” Europhys. Lett. 62, 175 (2003).
[Crossref]

Carmichael, H. J.

P. R. Rice and H. J. Carmichael, “Photon statistics of a cavity-QED laser: a comment on the laser-phase-transition analogy,” Phys. Rev. A 50, 4318 (1994).
[Crossref] [PubMed]

Childs, J. J.

D. J. Heinzen, J. J. Childs, J. E. Thomas, and M. S. Feld, “Enhanced and inhibited visible spontaneous emission by atoms in a confocal resonator,” Phys. Rev. Lett. 58, 1320 (1987).
[Crossref] [PubMed]

Cirac, J.

T. Pellizzari, S. Gardiner, J. Cirac, and P. Zoller, “Decoherence, continous obervation, and quantum computing: a cavity QED model,” Phys. Rev. Lett. 75, 3788 (1995).
[Crossref] [PubMed]

Cirac, J. I.

J. I. Cirac, P. Zoller, H. J. Kimble, and H. Mabuchi, “Quantum state transfer and entanglement distribution among distant nodes in a quantum network,” Phys. Rev. Lett. 78, 3221 (1997).
[Crossref]

Cooper, K.

Z. Yuan, B. E. Kardynal, R. M. Stevenson, A. J. Shields, C. J. Lobo, K. Cooper, N. S. Beattie, D. A. Ritchie, and M. Pepper, “Electrically driven single-photon source,” Science 295, 102 (2002).
[Crossref]

Cunningham, J. E.

X. Fan, T. Takagahara, J. E. Cunningham, and H. Wang, “Pure dephasing induced by exciton-phonon interactions in narrow GaAs quantum wells,” Solid State Commun. 108, 857 (1998).
[Crossref]

Curtis, E. A.

M. Trupke, E. A. Hinds, S. Eriksson, and E. A. Curtis, “Microfabricated high-finesse optical cavity with open access and small volume,” arXiv:quant-ph/0506234 (2005).

D’Amico, I.

E. Pazy, E. Biolatti, T. Calarco, I. D’Amico, P. Zanardi, F. Rossi, and P. Zoller, “Spin-based optical quantum computation vis Pauli blocking in semiconductor quantum dots,” Europhys. Lett. 62, 175 (2003).
[Crossref]

Davidovich, L.

M. Brune, J. M. Raimond, P. Goy, L. Davidovich, and S. Haroche, “Realization of a two-photon maser oscillator,” Phys. Rev. Lett. 59, 1899 (1987).
[Crossref] [PubMed]

De Martini, F.

F. De Martini, G. Innocenti, G. R. Jacobovitz, and P. Mataloni, “Anomalous spontaneous emission time in a microscopic optical cavity,” Phys. Rev. Lett. 59, 2955 (1987).
[Crossref] [PubMed]

Deppe, D. G.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200 (2004).
[Crossref] [PubMed]

Derkacs, D.

R. J. Hughes, J. E. Nordholt, D. Derkacs, and C. G. Peterson, “Practical free-space quantum key distribution over 10 km in daylight and at night,” New J. Phys. 4, (2002).
[Crossref]

DiVincenzo, D. P.

A. Imamoglu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum information processing using quantum dots spins and cavity QED,” Phys. Rev. Lett. 83, 4204 (1999).
[Crossref]

Doherty, A. C.

H. Mabuchi and A. C. Doherty, “Cavity quantum electrodynamics: coherence in context,” Science 298, 1372 (2002).
[Crossref] [PubMed]

Drummond, P. D.

P. D. Drummond, “Optical bistability in a radially varying mode,” IEEE J. Quantum Electron. QE–17, 301 (1981).
[Crossref]

Eckert, A.

C. H. Bennett, G. Brassard, and A. Eckert, “Quantum cryptography,” Sci. Am. 267, 50 (1992).
[Crossref]

Ekert, A.

D. Bouwmeester, A. Ekert, and A. Zeilinger, in The Physics of Quantum Information (Springer, Berlin, 2000).

Ell, C.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200 (2004).
[Crossref] [PubMed]

Eriksson, S.

M. Trupke, E. A. Hinds, S. Eriksson, and E. A. Curtis, “Microfabricated high-finesse optical cavity with open access and small volume,” arXiv:quant-ph/0506234 (2005).

Fan, X.

X. Fan, T. Takagahara, J. E. Cunningham, and H. Wang, “Pure dephasing induced by exciton-phonon interactions in narrow GaAs quantum wells,” Solid State Commun. 108, 857 (1998).
[Crossref]

Fedrizzi, A.

Feld, M. S.

D. J. Heinzen, J. J. Childs, J. E. Thomas, and M. S. Feld, “Enhanced and inhibited visible spontaneous emission by atoms in a confocal resonator,” Phys. Rev. Lett. 58, 1320 (1987).
[Crossref] [PubMed]

D. J. Heinzen and M. S. Feld, “Vacuum radiative level shift and spontaneous-emission linewidth of an atom in an optical resonator,” Phys. Rev. Lett. 59, 2623 (1987).
[Crossref] [PubMed]

Feng, F. Y.

C. Z. Peng, T. Yang, X. H. Bao, J. Zhang, X. M. Jin, F. Y. Feng, B. Yang, J. Yang, J. Yin, Q. Zhang, N. Li, B. L. Tian, and J. W. Pan, “Experimental free-space distribution of entangled photon pairs over 13 km: towards satellite-based global quantum communication,” Phys. Rev. Lett. 94, 150501 (2005).
[Crossref] [PubMed]

Forchel, A.

J. P. Reithmaier, G. Sek, A. Loffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432, 197 (2004).
[Crossref] [PubMed]

M. Bayer and A. Forchel, “Temperature dependence of the exciton homogeneous linewidth in In0.6Ga0.4As/GaAs self-assembled quantum dots,” Phys. Rev. B 65, 041308(R) (2002).
[Crossref]

Foster, D. H.

D. H. Foster and J. U. Nöckel, “Methods for 3-d vector microcavity problems involving a planar dielectric mirror,” Opt. Commun. 234, 351 (2004).
[Crossref]

Gailhanou, M.

R. P. Stanley, R. Houdré, U. Oesterle, M. Gailhanou, and M. Ilegems, “Ultrahigh finesse microcavity with distributed Bragg reflectors,” Appl. Phys. Lett. 65, 1883 (1994).
[Crossref]

Gammon, D.

D. Gammon, E. S. Snow, B. V. Shanabrook, D. S. Katzer, and D. Park, “Fine structure splitting in the optical spectra of single GaAs quantum dots,” Phys. Rev. Lett. 76, 3005 (1996).
[Crossref] [PubMed]

Gardiner, S.

T. Pellizzari, S. Gardiner, J. Cirac, and P. Zoller, “Decoherence, continous obervation, and quantum computing: a cavity QED model,” Phys. Rev. Lett. 75, 3788 (1995).
[Crossref] [PubMed]

Gayral, B.

A. Kiraz, C. Reese, B. Gayral, L. Zhang, W. V. Schoenfeld, B. D. Gerardot, P. M. Petroff, E. L. Hu, and A. Imamoglu, “Cavity-quantum electrodynamics with quantum dots,” J. Opt. B: Quantum Semiclass. Opt. 5, 129 (2003).
[Crossref]

Gérard, J. M.

E. Peter, P. Senellart, D. Martrou, A. Lemaitre, J. Hours, J. M. Gérard, and J. Bloch, “Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity,” Phys. Rev. Lett. 95, 067401 (2005).
[Crossref] [PubMed]

L. C. Andreani, G. Panzarini, and J. M. Gérard, “Strong-coupling regime for quantum boxes in pillar microcavi-ties: theory,” Phys. Rev. B 60, 13276 (1999).
[Crossref]

Gerardot, B. D.

A. Kiraz, C. Reese, B. Gayral, L. Zhang, W. V. Schoenfeld, B. D. Gerardot, P. M. Petroff, E. L. Hu, and A. Imamoglu, “Cavity-quantum electrodynamics with quantum dots,” J. Opt. B: Quantum Semiclass. Opt. 5, 129 (2003).
[Crossref]

Gibbs, H. M.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200 (2004).
[Crossref] [PubMed]

G. Khitrova, H. M. Gibbs, F. Jahnke, M. Kira, and S. W. Koch, “Nonlinear optics of normal-mode-coupling semiconductor microcavities,” Rev. Mod. Phys. 71, 1591 (1999).
[Crossref]

Goy, P.

M. Brune, J. M. Raimond, P. Goy, L. Davidovich, and S. Haroche, “Realization of a two-photon maser oscillator,” Phys. Rev. Lett. 59, 1899 (1987).
[Crossref] [PubMed]

Hagn, M.

A. Zrenner, L. V. Butov, M. Hagn, G. Abstreiter, G. Bohm, and G. Weimann, “Quantum dots formed by interface fluctuations in AlAs/GaAs coupled quantum well structures,” Phys. Rev. Lett. 72, 3382 (1994).
[Crossref] [PubMed]

Haroche, S.

S. Haroche and D. Kleppner, “Cavity quantum electrodynamics,” Physics Today 42, 24 (1989).
[Crossref]

M. Brune, J. M. Raimond, P. Goy, L. Davidovich, and S. Haroche, “Realization of a two-photon maser oscillator,” Phys. Rev. Lett. 59, 1899 (1987).
[Crossref] [PubMed]

Heinzen, D. J.

D. J. Heinzen, J. J. Childs, J. E. Thomas, and M. S. Feld, “Enhanced and inhibited visible spontaneous emission by atoms in a confocal resonator,” Phys. Rev. Lett. 58, 1320 (1987).
[Crossref] [PubMed]

D. J. Heinzen and M. S. Feld, “Vacuum radiative level shift and spontaneous-emission linewidth of an atom in an optical resonator,” Phys. Rev. Lett. 59, 2623 (1987).
[Crossref] [PubMed]

Hendrickson, J.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200 (2004).
[Crossref] [PubMed]

Hennrich, M.

A. Kuhn, M. Hennrich, and G. Rempe, “Deterministic single-photon source for distributed quantum networking,” Phys. Rev. Lett. 89, 067901 (2002).
[Crossref] [PubMed]

Hilfer, E. S.

R. G. Hulet, E. S. Hilfer, and D. Kleppner, “Inhibited spontaneous emission by a Rydberg atom,” Phys. Rev. Lett. 55, 2137 (1985).
[Crossref] [PubMed]

Hinds, E. A.

M. Trupke, E. A. Hinds, S. Eriksson, and E. A. Curtis, “Microfabricated high-finesse optical cavity with open access and small volume,” arXiv:quant-ph/0506234 (2005).

Hofmann, C.

J. P. Reithmaier, G. Sek, A. Loffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432, 197 (2004).
[Crossref] [PubMed]

Holland, M.

S. Bhongale, M. Holland, and M. G. Raymer, “Quantum dot quantum computing: non-paraxial eigenmodes of microcavity,” presented at the APS 34th Meeting of the Division of AMO Physics, Boulder, CO, 20-24 May 2003.

Hood, C. J.

Q. A. Turchette, C. J. Hood, W. Lange, H. Mabuchi, and H. J. Kimble, “Measurement of conditional phase shifts for quantum logic,” Phys. Rev. Lett. 75, 4710 (1995).
[Crossref] [PubMed]

Houdré, R.

R. P. Stanley, R. Houdré, U. Oesterle, M. Gailhanou, and M. Ilegems, “Ultrahigh finesse microcavity with distributed Bragg reflectors,” Appl. Phys. Lett. 65, 1883 (1994).
[Crossref]

Hours, J.

E. Peter, P. Senellart, D. Martrou, A. Lemaitre, J. Hours, J. M. Gérard, and J. Bloch, “Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity,” Phys. Rev. Lett. 95, 067401 (2005).
[Crossref] [PubMed]

Hu, E. L.

A. Kiraz, C. Reese, B. Gayral, L. Zhang, W. V. Schoenfeld, B. D. Gerardot, P. M. Petroff, E. L. Hu, and A. Imamoglu, “Cavity-quantum electrodynamics with quantum dots,” J. Opt. B: Quantum Semiclass. Opt. 5, 129 (2003).
[Crossref]

Hughes, R. J.

R. J. Hughes, J. E. Nordholt, D. Derkacs, and C. G. Peterson, “Practical free-space quantum key distribution over 10 km in daylight and at night,” New J. Phys. 4, (2002).
[Crossref]

Hulet, R. G.

R. G. Hulet, E. S. Hilfer, and D. Kleppner, “Inhibited spontaneous emission by a Rydberg atom,” Phys. Rev. Lett. 55, 2137 (1985).
[Crossref] [PubMed]

Ilegems, M.

R. P. Stanley, R. Houdré, U. Oesterle, M. Gailhanou, and M. Ilegems, “Ultrahigh finesse microcavity with distributed Bragg reflectors,” Appl. Phys. Lett. 65, 1883 (1994).
[Crossref]

Imamoglu, A.

A. Kiraz, C. Reese, B. Gayral, L. Zhang, W. V. Schoenfeld, B. D. Gerardot, P. M. Petroff, E. L. Hu, and A. Imamoglu, “Cavity-quantum electrodynamics with quantum dots,” J. Opt. B: Quantum Semiclass. Opt. 5, 129 (2003).
[Crossref]

A. Imamoglu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum information processing using quantum dots spins and cavity QED,” Phys. Rev. Lett. 83, 4204 (1999).
[Crossref]

Innocenti, G.

F. De Martini, G. Innocenti, G. R. Jacobovitz, and P. Mataloni, “Anomalous spontaneous emission time in a microscopic optical cavity,” Phys. Rev. Lett. 59, 2955 (1987).
[Crossref] [PubMed]

Jacobovitz, G. R.

F. De Martini, G. Innocenti, G. R. Jacobovitz, and P. Mataloni, “Anomalous spontaneous emission time in a microscopic optical cavity,” Phys. Rev. Lett. 59, 2955 (1987).
[Crossref] [PubMed]

Jahnke, F.

G. Khitrova, H. M. Gibbs, F. Jahnke, M. Kira, and S. W. Koch, “Nonlinear optics of normal-mode-coupling semiconductor microcavities,” Rev. Mod. Phys. 71, 1591 (1999).
[Crossref]

Jin, X. M.

C. Z. Peng, T. Yang, X. H. Bao, J. Zhang, X. M. Jin, F. Y. Feng, B. Yang, J. Yang, J. Yin, Q. Zhang, N. Li, B. L. Tian, and J. W. Pan, “Experimental free-space distribution of entangled photon pairs over 13 km: towards satellite-based global quantum communication,” Phys. Rev. Lett. 94, 150501 (2005).
[Crossref] [PubMed]

Kardynal, B. E.

Z. Yuan, B. E. Kardynal, R. M. Stevenson, A. J. Shields, C. J. Lobo, K. Cooper, N. S. Beattie, D. A. Ritchie, and M. Pepper, “Electrically driven single-photon source,” Science 295, 102 (2002).
[Crossref]

Katzer, D. S.

D. Gammon, E. S. Snow, B. V. Shanabrook, D. S. Katzer, and D. Park, “Fine structure splitting in the optical spectra of single GaAs quantum dots,” Phys. Rev. Lett. 76, 3005 (1996).
[Crossref] [PubMed]

Keldysh, L. V.

J. P. Reithmaier, G. Sek, A. Loffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432, 197 (2004).
[Crossref] [PubMed]

Khitrova, G.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200 (2004).
[Crossref] [PubMed]

G. Khitrova, H. M. Gibbs, F. Jahnke, M. Kira, and S. W. Koch, “Nonlinear optics of normal-mode-coupling semiconductor microcavities,” Rev. Mod. Phys. 71, 1591 (1999).
[Crossref]

Kimble, H. J.

J. McKeever, A. Boca, A. D. Boozer, R. Miller, J. R. Buck, A. Kuzmich, and H. J. Kimble, “Deterministic generation of single photons from one atom trapped in a cavity,” Science 303, 1992 (2004).
[Crossref] [PubMed]

J. I. Cirac, P. Zoller, H. J. Kimble, and H. Mabuchi, “Quantum state transfer and entanglement distribution among distant nodes in a quantum network,” Phys. Rev. Lett. 78, 3221 (1997).
[Crossref]

Q. A. Turchette, C. J. Hood, W. Lange, H. Mabuchi, and H. J. Kimble, “Measurement of conditional phase shifts for quantum logic,” Phys. Rev. Lett. 75, 4710 (1995).
[Crossref] [PubMed]

G. Rempe, R. J. Thompson, R. J. Brecha, W. D. Lee, and H. J. Kimble, “Optical bistability and photon statistics in cavity quantum electrodynamics,” Phys. Rev. Lett. 67, 1727 (1991).
[Crossref] [PubMed]

H. J. Kimble, “Structure and dynamics in cavity quantum electrodynamics,” in Cavity Quantum Electrodynamics, P. Berman ed. (Academic Press, San Diego, 1994), pp. 203-266.

Kira, M.

G. Khitrova, H. M. Gibbs, F. Jahnke, M. Kira, and S. W. Koch, “Nonlinear optics of normal-mode-coupling semiconductor microcavities,” Rev. Mod. Phys. 71, 1591 (1999).
[Crossref]

Kiraz, A.

A. Kiraz, C. Reese, B. Gayral, L. Zhang, W. V. Schoenfeld, B. D. Gerardot, P. M. Petroff, E. L. Hu, and A. Imamoglu, “Cavity-quantum electrodynamics with quantum dots,” J. Opt. B: Quantum Semiclass. Opt. 5, 129 (2003).
[Crossref]

Kleppner, D.

S. Haroche and D. Kleppner, “Cavity quantum electrodynamics,” Physics Today 42, 24 (1989).
[Crossref]

R. G. Hulet, E. S. Hilfer, and D. Kleppner, “Inhibited spontaneous emission by a Rydberg atom,” Phys. Rev. Lett. 55, 2137 (1985).
[Crossref] [PubMed]

Koch, S. W.

G. Khitrova, H. M. Gibbs, F. Jahnke, M. Kira, and S. W. Koch, “Nonlinear optics of normal-mode-coupling semiconductor microcavities,” Rev. Mod. Phys. 71, 1591 (1999).
[Crossref]

Kuhn, A.

A. Kuhn, M. Hennrich, and G. Rempe, “Deterministic single-photon source for distributed quantum networking,” Phys. Rev. Lett. 89, 067901 (2002).
[Crossref] [PubMed]

Kuhn, S.

J. P. Reithmaier, G. Sek, A. Loffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432, 197 (2004).
[Crossref] [PubMed]

Kulakovskii, V. D.

J. P. Reithmaier, G. Sek, A. Loffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432, 197 (2004).
[Crossref] [PubMed]

Kurtsiefer, C.

Kuzmich, A.

J. McKeever, A. Boca, A. D. Boozer, R. Miller, J. R. Buck, A. Kuzmich, and H. J. Kimble, “Deterministic generation of single photons from one atom trapped in a cavity,” Science 303, 1992 (2004).
[Crossref] [PubMed]

Lange, W.

Q. A. Turchette, C. J. Hood, W. Lange, H. Mabuchi, and H. J. Kimble, “Measurement of conditional phase shifts for quantum logic,” Phys. Rev. Lett. 75, 4710 (1995).
[Crossref] [PubMed]

Lee, W. D.

G. Rempe, R. J. Thompson, R. J. Brecha, W. D. Lee, and H. J. Kimble, “Optical bistability and photon statistics in cavity quantum electrodynamics,” Phys. Rev. Lett. 67, 1727 (1991).
[Crossref] [PubMed]

Lemaitre, A.

E. Peter, P. Senellart, D. Martrou, A. Lemaitre, J. Hours, J. M. Gérard, and J. Bloch, “Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity,” Phys. Rev. Lett. 95, 067401 (2005).
[Crossref] [PubMed]

Li, N.

C. Z. Peng, T. Yang, X. H. Bao, J. Zhang, X. M. Jin, F. Y. Feng, B. Yang, J. Yang, J. Yin, Q. Zhang, N. Li, B. L. Tian, and J. W. Pan, “Experimental free-space distribution of entangled photon pairs over 13 km: towards satellite-based global quantum communication,” Phys. Rev. Lett. 94, 150501 (2005).
[Crossref] [PubMed]

Lindenthal, M.

Lobo, C. J.

Z. Yuan, B. E. Kardynal, R. M. Stevenson, A. J. Shields, C. J. Lobo, K. Cooper, N. S. Beattie, D. A. Ritchie, and M. Pepper, “Electrically driven single-photon source,” Science 295, 102 (2002).
[Crossref]

Loffler, A.

J. P. Reithmaier, G. Sek, A. Loffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432, 197 (2004).
[Crossref] [PubMed]

Loss, D.

A. Imamoglu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum information processing using quantum dots spins and cavity QED,” Phys. Rev. Lett. 83, 4204 (1999).
[Crossref]

Mabuchi, H.

H. Mabuchi and A. C. Doherty, “Cavity quantum electrodynamics: coherence in context,” Science 298, 1372 (2002).
[Crossref] [PubMed]

J. I. Cirac, P. Zoller, H. J. Kimble, and H. Mabuchi, “Quantum state transfer and entanglement distribution among distant nodes in a quantum network,” Phys. Rev. Lett. 78, 3221 (1997).
[Crossref]

Q. A. Turchette, C. J. Hood, W. Lange, H. Mabuchi, and H. J. Kimble, “Measurement of conditional phase shifts for quantum logic,” Phys. Rev. Lett. 75, 4710 (1995).
[Crossref] [PubMed]

Martrou, D.

E. Peter, P. Senellart, D. Martrou, A. Lemaitre, J. Hours, J. M. Gérard, and J. Bloch, “Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity,” Phys. Rev. Lett. 95, 067401 (2005).
[Crossref] [PubMed]

Mataloni, P.

F. De Martini, G. Innocenti, G. R. Jacobovitz, and P. Mataloni, “Anomalous spontaneous emission time in a microscopic optical cavity,” Phys. Rev. Lett. 59, 2955 (1987).
[Crossref] [PubMed]

McKeever, J.

J. McKeever, A. Boca, A. D. Boozer, R. Miller, J. R. Buck, A. Kuzmich, and H. J. Kimble, “Deterministic generation of single photons from one atom trapped in a cavity,” Science 303, 1992 (2004).
[Crossref] [PubMed]

Meschede, D.

D. Meschede, H. Walther, and G. Müller, “One-atom maser,” Phys. Rev. Lett. 54, 551 (1985).
[Crossref] [PubMed]

Milburn, G. J.

T. M. Stace, G. J. Milburn, and C. H. W. Barnes, “Entangled two-photon source using biexciton emission of an asymmetric quantum dot in a cavity,” Phys. Rev. B 67, 085317 (2003).
[Crossref]

Miller, R.

J. McKeever, A. Boca, A. D. Boozer, R. Miller, J. R. Buck, A. Kuzmich, and H. J. Kimble, “Deterministic generation of single photons from one atom trapped in a cavity,” Science 303, 1992 (2004).
[Crossref] [PubMed]

Morin, S. E.

S. E. Morin, C. C. Yu, and T. W. Mossberg, ”Strong atom-cavity coupling over large volumes and the observation of subnatural intracavity atomic linewidths,” Phys. Rev. Lett. 73, 1489 (1994).
[Crossref] [PubMed]

Mossberg, T. W.

S. E. Morin, C. C. Yu, and T. W. Mossberg, ”Strong atom-cavity coupling over large volumes and the observation of subnatural intracavity atomic linewidths,” Phys. Rev. Lett. 73, 1489 (1994).
[Crossref] [PubMed]

Müller, G.

D. Meschede, H. Walther, and G. Müller, “One-atom maser,” Phys. Rev. Lett. 54, 551 (1985).
[Crossref] [PubMed]

Nöckel, J. U.

D. H. Foster and J. U. Nöckel, “Methods for 3-d vector microcavity problems involving a planar dielectric mirror,” Opt. Commun. 234, 351 (2004).
[Crossref]

Nordholt, J. E.

R. J. Hughes, J. E. Nordholt, D. Derkacs, and C. G. Peterson, “Practical free-space quantum key distribution over 10 km in daylight and at night,” New J. Phys. 4, (2002).
[Crossref]

Oesterle, U.

R. P. Stanley, R. Houdré, U. Oesterle, M. Gailhanou, and M. Ilegems, “Ultrahigh finesse microcavity with distributed Bragg reflectors,” Appl. Phys. Lett. 65, 1883 (1994).
[Crossref]

Pan, J. W.

C. Z. Peng, T. Yang, X. H. Bao, J. Zhang, X. M. Jin, F. Y. Feng, B. Yang, J. Yang, J. Yin, Q. Zhang, N. Li, B. L. Tian, and J. W. Pan, “Experimental free-space distribution of entangled photon pairs over 13 km: towards satellite-based global quantum communication,” Phys. Rev. Lett. 94, 150501 (2005).
[Crossref] [PubMed]

Panzarini, G.

L. C. Andreani, G. Panzarini, and J. M. Gérard, “Strong-coupling regime for quantum boxes in pillar microcavi-ties: theory,” Phys. Rev. B 60, 13276 (1999).
[Crossref]

Park, D.

D. Gammon, E. S. Snow, B. V. Shanabrook, D. S. Katzer, and D. Park, “Fine structure splitting in the optical spectra of single GaAs quantum dots,” Phys. Rev. Lett. 76, 3005 (1996).
[Crossref] [PubMed]

Pazy, E.

E. Pazy, E. Biolatti, T. Calarco, I. D’Amico, P. Zanardi, F. Rossi, and P. Zoller, “Spin-based optical quantum computation vis Pauli blocking in semiconductor quantum dots,” Europhys. Lett. 62, 175 (2003).
[Crossref]

Pellizzari, T.

T. Pellizzari, S. Gardiner, J. Cirac, and P. Zoller, “Decoherence, continous obervation, and quantum computing: a cavity QED model,” Phys. Rev. Lett. 75, 3788 (1995).
[Crossref] [PubMed]

Pelton, M.

M. Pelton, J. Vuckovic, G. S. Solomon, A. Scherer, and Y. Yamamoto, “Three-dimensionally confined modes in micropost microcavities: quality factors and Purcell factors,” IEEE J. Quantum Electron. 38, 170 (2002).
[Crossref]

J. Vuckovic, M. Pelton, A. Scherer, and Y. Yamamoto, “Optimization of three-dimensional micropost microcav-ities for cavity quantum electrodynamics,” Phys. Rev. A 66, 023808 (2002).
[Crossref]

Peng, C. Z.

C. Z. Peng, T. Yang, X. H. Bao, J. Zhang, X. M. Jin, F. Y. Feng, B. Yang, J. Yang, J. Yin, Q. Zhang, N. Li, B. L. Tian, and J. W. Pan, “Experimental free-space distribution of entangled photon pairs over 13 km: towards satellite-based global quantum communication,” Phys. Rev. Lett. 94, 150501 (2005).
[Crossref] [PubMed]

Pepper, M.

Z. Yuan, B. E. Kardynal, R. M. Stevenson, A. J. Shields, C. J. Lobo, K. Cooper, N. S. Beattie, D. A. Ritchie, and M. Pepper, “Electrically driven single-photon source,” Science 295, 102 (2002).
[Crossref]

Peter, E.

E. Peter, P. Senellart, D. Martrou, A. Lemaitre, J. Hours, J. M. Gérard, and J. Bloch, “Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity,” Phys. Rev. Lett. 95, 067401 (2005).
[Crossref] [PubMed]

Peterson, C. G.

R. J. Hughes, J. E. Nordholt, D. Derkacs, and C. G. Peterson, “Practical free-space quantum key distribution over 10 km in daylight and at night,” New J. Phys. 4, (2002).
[Crossref]

Petroff, P. M.

A. Kiraz, C. Reese, B. Gayral, L. Zhang, W. V. Schoenfeld, B. D. Gerardot, P. M. Petroff, E. L. Hu, and A. Imamoglu, “Cavity-quantum electrodynamics with quantum dots,” J. Opt. B: Quantum Semiclass. Opt. 5, 129 (2003).
[Crossref]

Poppe, A.

Purcell, E. M.

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies (Abstract),” Phys. Rev. 69, 681 (1946).

Raimond, J. M.

M. Brune, J. M. Raimond, P. Goy, L. Davidovich, and S. Haroche, “Realization of a two-photon maser oscillator,” Phys. Rev. Lett. 59, 1899 (1987).
[Crossref] [PubMed]

Raymer, M. G.

S. Bhongale, M. Holland, and M. G. Raymer, “Quantum dot quantum computing: non-paraxial eigenmodes of microcavity,” presented at the APS 34th Meeting of the Division of AMO Physics, Boulder, CO, 20-24 May 2003.

Reese, C.

A. Kiraz, C. Reese, B. Gayral, L. Zhang, W. V. Schoenfeld, B. D. Gerardot, P. M. Petroff, E. L. Hu, and A. Imamoglu, “Cavity-quantum electrodynamics with quantum dots,” J. Opt. B: Quantum Semiclass. Opt. 5, 129 (2003).
[Crossref]

Reinecke, T. L.

J. P. Reithmaier, G. Sek, A. Loffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432, 197 (2004).
[Crossref] [PubMed]

Reithmaier, J. P.

J. P. Reithmaier, G. Sek, A. Loffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432, 197 (2004).
[Crossref] [PubMed]

Reitzenstein, S.

J. P. Reithmaier, G. Sek, A. Loffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432, 197 (2004).
[Crossref] [PubMed]

Rempe, G.

A. Kuhn, M. Hennrich, and G. Rempe, “Deterministic single-photon source for distributed quantum networking,” Phys. Rev. Lett. 89, 067901 (2002).
[Crossref] [PubMed]

G. Rempe, R. J. Thompson, R. J. Brecha, W. D. Lee, and H. J. Kimble, “Optical bistability and photon statistics in cavity quantum electrodynamics,” Phys. Rev. Lett. 67, 1727 (1991).
[Crossref] [PubMed]

Resch, K. J.

Rice, P. R.

P. R. Rice and H. J. Carmichael, “Photon statistics of a cavity-QED laser: a comment on the laser-phase-transition analogy,” Phys. Rev. A 50, 4318 (1994).
[Crossref] [PubMed]

Ritchie, D. A.

Z. Yuan, B. E. Kardynal, R. M. Stevenson, A. J. Shields, C. J. Lobo, K. Cooper, N. S. Beattie, D. A. Ritchie, and M. Pepper, “Electrically driven single-photon source,” Science 295, 102 (2002).
[Crossref]

Rossi, F.

E. Pazy, E. Biolatti, T. Calarco, I. D’Amico, P. Zanardi, F. Rossi, and P. Zoller, “Spin-based optical quantum computation vis Pauli blocking in semiconductor quantum dots,” Europhys. Lett. 62, 175 (2003).
[Crossref]

Rupper, G.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200 (2004).
[Crossref] [PubMed]

Scherer, A.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200 (2004).
[Crossref] [PubMed]

J. Vuckovic, M. Pelton, A. Scherer, and Y. Yamamoto, “Optimization of three-dimensional micropost microcav-ities for cavity quantum electrodynamics,” Phys. Rev. A 66, 023808 (2002).
[Crossref]

M. Pelton, J. Vuckovic, G. S. Solomon, A. Scherer, and Y. Yamamoto, “Three-dimensionally confined modes in micropost microcavities: quality factors and Purcell factors,” IEEE J. Quantum Electron. 38, 170 (2002).
[Crossref]

Schmitt-Manderbach, T.

Schoenfeld, W. V.

A. Kiraz, C. Reese, B. Gayral, L. Zhang, W. V. Schoenfeld, B. D. Gerardot, P. M. Petroff, E. L. Hu, and A. Imamoglu, “Cavity-quantum electrodynamics with quantum dots,” J. Opt. B: Quantum Semiclass. Opt. 5, 129 (2003).
[Crossref]

Sek, G.

J. P. Reithmaier, G. Sek, A. Loffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432, 197 (2004).
[Crossref] [PubMed]

Senellart, P.

E. Peter, P. Senellart, D. Martrou, A. Lemaitre, J. Hours, J. M. Gérard, and J. Bloch, “Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity,” Phys. Rev. Lett. 95, 067401 (2005).
[Crossref] [PubMed]

Shanabrook, B. V.

D. Gammon, E. S. Snow, B. V. Shanabrook, D. S. Katzer, and D. Park, “Fine structure splitting in the optical spectra of single GaAs quantum dots,” Phys. Rev. Lett. 76, 3005 (1996).
[Crossref] [PubMed]

Shchekin, O. B.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200 (2004).
[Crossref] [PubMed]

Sherwin, M.

A. Imamoglu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum information processing using quantum dots spins and cavity QED,” Phys. Rev. Lett. 83, 4204 (1999).
[Crossref]

Shields, A. J.

Z. Yuan, B. E. Kardynal, R. M. Stevenson, A. J. Shields, C. J. Lobo, K. Cooper, N. S. Beattie, D. A. Ritchie, and M. Pepper, “Electrically driven single-photon source,” Science 295, 102 (2002).
[Crossref]

Siegman, A. E.

A. E. Siegman, in Lasers, (University Science Books, Mill Valley, CA, 1986).

Slusher, R. E.

Y. Yamamoto and R. E. Slusher, “Optical processes in microcavities,” Phys. Today 46, 66 (1993).
[Crossref]

Small, A.

A. Imamoglu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum information processing using quantum dots spins and cavity QED,” Phys. Rev. Lett. 83, 4204 (1999).
[Crossref]

Snow, E. S.

D. Gammon, E. S. Snow, B. V. Shanabrook, D. S. Katzer, and D. Park, “Fine structure splitting in the optical spectra of single GaAs quantum dots,” Phys. Rev. Lett. 76, 3005 (1996).
[Crossref] [PubMed]

Solomon, G. S.

M. Pelton, J. Vuckovic, G. S. Solomon, A. Scherer, and Y. Yamamoto, “Three-dimensionally confined modes in micropost microcavities: quality factors and Purcell factors,” IEEE J. Quantum Electron. 38, 170 (2002).
[Crossref]

Stace, T. M.

T. M. Stace, G. J. Milburn, and C. H. W. Barnes, “Entangled two-photon source using biexciton emission of an asymmetric quantum dot in a cavity,” Phys. Rev. B 67, 085317 (2003).
[Crossref]

Stanley, R. P.

R. P. Stanley, R. Houdré, U. Oesterle, M. Gailhanou, and M. Ilegems, “Ultrahigh finesse microcavity with distributed Bragg reflectors,” Appl. Phys. Lett. 65, 1883 (1994).
[Crossref]

Stevenson, R. M.

Z. Yuan, B. E. Kardynal, R. M. Stevenson, A. J. Shields, C. J. Lobo, K. Cooper, N. S. Beattie, D. A. Ritchie, and M. Pepper, “Electrically driven single-photon source,” Science 295, 102 (2002).
[Crossref]

Takagahara, T.

X. Fan, T. Takagahara, J. E. Cunningham, and H. Wang, “Pure dephasing induced by exciton-phonon interactions in narrow GaAs quantum wells,” Solid State Commun. 108, 857 (1998).
[Crossref]

Taraba, M.

Thomas, J. E.

D. J. Heinzen, J. J. Childs, J. E. Thomas, and M. S. Feld, “Enhanced and inhibited visible spontaneous emission by atoms in a confocal resonator,” Phys. Rev. Lett. 58, 1320 (1987).
[Crossref] [PubMed]

Thompson, R. J.

G. Rempe, R. J. Thompson, R. J. Brecha, W. D. Lee, and H. J. Kimble, “Optical bistability and photon statistics in cavity quantum electrodynamics,” Phys. Rev. Lett. 67, 1727 (1991).
[Crossref] [PubMed]

Tian, B. L.

C. Z. Peng, T. Yang, X. H. Bao, J. Zhang, X. M. Jin, F. Y. Feng, B. Yang, J. Yang, J. Yin, Q. Zhang, N. Li, B. L. Tian, and J. W. Pan, “Experimental free-space distribution of entangled photon pairs over 13 km: towards satellite-based global quantum communication,” Phys. Rev. Lett. 94, 150501 (2005).
[Crossref] [PubMed]

Trupke, M.

M. Trupke, E. A. Hinds, S. Eriksson, and E. A. Curtis, “Microfabricated high-finesse optical cavity with open access and small volume,” arXiv:quant-ph/0506234 (2005).

Turchette, Q. A.

Q. A. Turchette, C. J. Hood, W. Lange, H. Mabuchi, and H. J. Kimble, “Measurement of conditional phase shifts for quantum logic,” Phys. Rev. Lett. 75, 4710 (1995).
[Crossref] [PubMed]

Ursin, R.

Vuckovic, J.

M. Pelton, J. Vuckovic, G. S. Solomon, A. Scherer, and Y. Yamamoto, “Three-dimensionally confined modes in micropost microcavities: quality factors and Purcell factors,” IEEE J. Quantum Electron. 38, 170 (2002).
[Crossref]

J. Vuckovic, M. Pelton, A. Scherer, and Y. Yamamoto, “Optimization of three-dimensional micropost microcav-ities for cavity quantum electrodynamics,” Phys. Rev. A 66, 023808 (2002).
[Crossref]

Walther, H.

D. Meschede, H. Walther, and G. Müller, “One-atom maser,” Phys. Rev. Lett. 54, 551 (1985).
[Crossref] [PubMed]

Walther, P.

Wang, H.

X. Fan, T. Takagahara, J. E. Cunningham, and H. Wang, “Pure dephasing induced by exciton-phonon interactions in narrow GaAs quantum wells,” Solid State Commun. 108, 857 (1998).
[Crossref]

Weier, H.

Weimann, G.

A. Zrenner, L. V. Butov, M. Hagn, G. Abstreiter, G. Bohm, and G. Weimann, “Quantum dots formed by interface fluctuations in AlAs/GaAs coupled quantum well structures,” Phys. Rev. Lett. 72, 3382 (1994).
[Crossref] [PubMed]

Weinfurter, H.

Wolf, E.

M. Born and E. Wolf, in Principles of Optics (7th Ed.), (Cambridge University Press, New York, 1999) pp. 338-340.

Yamamoto, Y.

M. Pelton, J. Vuckovic, G. S. Solomon, A. Scherer, and Y. Yamamoto, “Three-dimensionally confined modes in micropost microcavities: quality factors and Purcell factors,” IEEE J. Quantum Electron. 38, 170 (2002).
[Crossref]

J. Vuckovic, M. Pelton, A. Scherer, and Y. Yamamoto, “Optimization of three-dimensional micropost microcav-ities for cavity quantum electrodynamics,” Phys. Rev. A 66, 023808 (2002).
[Crossref]

Y. Yamamoto and R. E. Slusher, “Optical processes in microcavities,” Phys. Today 46, 66 (1993).
[Crossref]

Yang, B.

C. Z. Peng, T. Yang, X. H. Bao, J. Zhang, X. M. Jin, F. Y. Feng, B. Yang, J. Yang, J. Yin, Q. Zhang, N. Li, B. L. Tian, and J. W. Pan, “Experimental free-space distribution of entangled photon pairs over 13 km: towards satellite-based global quantum communication,” Phys. Rev. Lett. 94, 150501 (2005).
[Crossref] [PubMed]

Yang, J.

C. Z. Peng, T. Yang, X. H. Bao, J. Zhang, X. M. Jin, F. Y. Feng, B. Yang, J. Yang, J. Yin, Q. Zhang, N. Li, B. L. Tian, and J. W. Pan, “Experimental free-space distribution of entangled photon pairs over 13 km: towards satellite-based global quantum communication,” Phys. Rev. Lett. 94, 150501 (2005).
[Crossref] [PubMed]

Yang, T.

C. Z. Peng, T. Yang, X. H. Bao, J. Zhang, X. M. Jin, F. Y. Feng, B. Yang, J. Yang, J. Yin, Q. Zhang, N. Li, B. L. Tian, and J. W. Pan, “Experimental free-space distribution of entangled photon pairs over 13 km: towards satellite-based global quantum communication,” Phys. Rev. Lett. 94, 150501 (2005).
[Crossref] [PubMed]

Yin, J.

C. Z. Peng, T. Yang, X. H. Bao, J. Zhang, X. M. Jin, F. Y. Feng, B. Yang, J. Yang, J. Yin, Q. Zhang, N. Li, B. L. Tian, and J. W. Pan, “Experimental free-space distribution of entangled photon pairs over 13 km: towards satellite-based global quantum communication,” Phys. Rev. Lett. 94, 150501 (2005).
[Crossref] [PubMed]

Yoshie, T.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200 (2004).
[Crossref] [PubMed]

Yu, C. C.

S. E. Morin, C. C. Yu, and T. W. Mossberg, ”Strong atom-cavity coupling over large volumes and the observation of subnatural intracavity atomic linewidths,” Phys. Rev. Lett. 73, 1489 (1994).
[Crossref] [PubMed]

Yuan, Z.

Z. Yuan, B. E. Kardynal, R. M. Stevenson, A. J. Shields, C. J. Lobo, K. Cooper, N. S. Beattie, D. A. Ritchie, and M. Pepper, “Electrically driven single-photon source,” Science 295, 102 (2002).
[Crossref]

Zanardi, P.

E. Pazy, E. Biolatti, T. Calarco, I. D’Amico, P. Zanardi, F. Rossi, and P. Zoller, “Spin-based optical quantum computation vis Pauli blocking in semiconductor quantum dots,” Europhys. Lett. 62, 175 (2003).
[Crossref]

Zeilinger, A.

Zhang, J.

C. Z. Peng, T. Yang, X. H. Bao, J. Zhang, X. M. Jin, F. Y. Feng, B. Yang, J. Yang, J. Yin, Q. Zhang, N. Li, B. L. Tian, and J. W. Pan, “Experimental free-space distribution of entangled photon pairs over 13 km: towards satellite-based global quantum communication,” Phys. Rev. Lett. 94, 150501 (2005).
[Crossref] [PubMed]

Zhang, L.

A. Kiraz, C. Reese, B. Gayral, L. Zhang, W. V. Schoenfeld, B. D. Gerardot, P. M. Petroff, E. L. Hu, and A. Imamoglu, “Cavity-quantum electrodynamics with quantum dots,” J. Opt. B: Quantum Semiclass. Opt. 5, 129 (2003).
[Crossref]

Zhang, Q.

C. Z. Peng, T. Yang, X. H. Bao, J. Zhang, X. M. Jin, F. Y. Feng, B. Yang, J. Yang, J. Yin, Q. Zhang, N. Li, B. L. Tian, and J. W. Pan, “Experimental free-space distribution of entangled photon pairs over 13 km: towards satellite-based global quantum communication,” Phys. Rev. Lett. 94, 150501 (2005).
[Crossref] [PubMed]

Zoller, P.

E. Pazy, E. Biolatti, T. Calarco, I. D’Amico, P. Zanardi, F. Rossi, and P. Zoller, “Spin-based optical quantum computation vis Pauli blocking in semiconductor quantum dots,” Europhys. Lett. 62, 175 (2003).
[Crossref]

J. I. Cirac, P. Zoller, H. J. Kimble, and H. Mabuchi, “Quantum state transfer and entanglement distribution among distant nodes in a quantum network,” Phys. Rev. Lett. 78, 3221 (1997).
[Crossref]

T. Pellizzari, S. Gardiner, J. Cirac, and P. Zoller, “Decoherence, continous obervation, and quantum computing: a cavity QED model,” Phys. Rev. Lett. 75, 3788 (1995).
[Crossref] [PubMed]

Zrenner, A.

A. Zrenner, L. V. Butov, M. Hagn, G. Abstreiter, G. Bohm, and G. Weimann, “Quantum dots formed by interface fluctuations in AlAs/GaAs coupled quantum well structures,” Phys. Rev. Lett. 72, 3382 (1994).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

R. P. Stanley, R. Houdré, U. Oesterle, M. Gailhanou, and M. Ilegems, “Ultrahigh finesse microcavity with distributed Bragg reflectors,” Appl. Phys. Lett. 65, 1883 (1994).
[Crossref]

Europhys. Lett. (1)

E. Pazy, E. Biolatti, T. Calarco, I. D’Amico, P. Zanardi, F. Rossi, and P. Zoller, “Spin-based optical quantum computation vis Pauli blocking in semiconductor quantum dots,” Europhys. Lett. 62, 175 (2003).
[Crossref]

IEEE J. Quantum Electron. (2)

M. Pelton, J. Vuckovic, G. S. Solomon, A. Scherer, and Y. Yamamoto, “Three-dimensionally confined modes in micropost microcavities: quality factors and Purcell factors,” IEEE J. Quantum Electron. 38, 170 (2002).
[Crossref]

P. D. Drummond, “Optical bistability in a radially varying mode,” IEEE J. Quantum Electron. QE–17, 301 (1981).
[Crossref]

J. Opt. B: Quantum Semiclass. Opt. (1)

A. Kiraz, C. Reese, B. Gayral, L. Zhang, W. V. Schoenfeld, B. D. Gerardot, P. M. Petroff, E. L. Hu, and A. Imamoglu, “Cavity-quantum electrodynamics with quantum dots,” J. Opt. B: Quantum Semiclass. Opt. 5, 129 (2003).
[Crossref]

Nature (2)

J. P. Reithmaier, G. Sek, A. Loffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432, 197 (2004).
[Crossref] [PubMed]

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200 (2004).
[Crossref] [PubMed]

New J. Phys. (1)

R. J. Hughes, J. E. Nordholt, D. Derkacs, and C. G. Peterson, “Practical free-space quantum key distribution over 10 km in daylight and at night,” New J. Phys. 4, (2002).
[Crossref]

Opt. Commun. (1)

D. H. Foster and J. U. Nöckel, “Methods for 3-d vector microcavity problems involving a planar dielectric mirror,” Opt. Commun. 234, 351 (2004).
[Crossref]

Opt. Express (1)

Phys. Rev. (1)

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies (Abstract),” Phys. Rev. 69, 681 (1946).

Phys. Rev. A (2)

J. Vuckovic, M. Pelton, A. Scherer, and Y. Yamamoto, “Optimization of three-dimensional micropost microcav-ities for cavity quantum electrodynamics,” Phys. Rev. A 66, 023808 (2002).
[Crossref]

P. R. Rice and H. J. Carmichael, “Photon statistics of a cavity-QED laser: a comment on the laser-phase-transition analogy,” Phys. Rev. A 50, 4318 (1994).
[Crossref] [PubMed]

Phys. Rev. B (3)

L. C. Andreani, G. Panzarini, and J. M. Gérard, “Strong-coupling regime for quantum boxes in pillar microcavi-ties: theory,” Phys. Rev. B 60, 13276 (1999).
[Crossref]

T. M. Stace, G. J. Milburn, and C. H. W. Barnes, “Entangled two-photon source using biexciton emission of an asymmetric quantum dot in a cavity,” Phys. Rev. B 67, 085317 (2003).
[Crossref]

M. Bayer and A. Forchel, “Temperature dependence of the exciton homogeneous linewidth in In0.6Ga0.4As/GaAs self-assembled quantum dots,” Phys. Rev. B 65, 041308(R) (2002).
[Crossref]

Phys. Rev. Lett. (17)

E. Peter, P. Senellart, D. Martrou, A. Lemaitre, J. Hours, J. M. Gérard, and J. Bloch, “Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity,” Phys. Rev. Lett. 95, 067401 (2005).
[Crossref] [PubMed]

R. G. Hulet, E. S. Hilfer, and D. Kleppner, “Inhibited spontaneous emission by a Rydberg atom,” Phys. Rev. Lett. 55, 2137 (1985).
[Crossref] [PubMed]

F. De Martini, G. Innocenti, G. R. Jacobovitz, and P. Mataloni, “Anomalous spontaneous emission time in a microscopic optical cavity,” Phys. Rev. Lett. 59, 2955 (1987).
[Crossref] [PubMed]

D. J. Heinzen, J. J. Childs, J. E. Thomas, and M. S. Feld, “Enhanced and inhibited visible spontaneous emission by atoms in a confocal resonator,” Phys. Rev. Lett. 58, 1320 (1987).
[Crossref] [PubMed]

D. J. Heinzen and M. S. Feld, “Vacuum radiative level shift and spontaneous-emission linewidth of an atom in an optical resonator,” Phys. Rev. Lett. 59, 2623 (1987).
[Crossref] [PubMed]

S. E. Morin, C. C. Yu, and T. W. Mossberg, ”Strong atom-cavity coupling over large volumes and the observation of subnatural intracavity atomic linewidths,” Phys. Rev. Lett. 73, 1489 (1994).
[Crossref] [PubMed]

Q. A. Turchette, C. J. Hood, W. Lange, H. Mabuchi, and H. J. Kimble, “Measurement of conditional phase shifts for quantum logic,” Phys. Rev. Lett. 75, 4710 (1995).
[Crossref] [PubMed]

D. Meschede, H. Walther, and G. Müller, “One-atom maser,” Phys. Rev. Lett. 54, 551 (1985).
[Crossref] [PubMed]

M. Brune, J. M. Raimond, P. Goy, L. Davidovich, and S. Haroche, “Realization of a two-photon maser oscillator,” Phys. Rev. Lett. 59, 1899 (1987).
[Crossref] [PubMed]

G. Rempe, R. J. Thompson, R. J. Brecha, W. D. Lee, and H. J. Kimble, “Optical bistability and photon statistics in cavity quantum electrodynamics,” Phys. Rev. Lett. 67, 1727 (1991).
[Crossref] [PubMed]

T. Pellizzari, S. Gardiner, J. Cirac, and P. Zoller, “Decoherence, continous obervation, and quantum computing: a cavity QED model,” Phys. Rev. Lett. 75, 3788 (1995).
[Crossref] [PubMed]

J. I. Cirac, P. Zoller, H. J. Kimble, and H. Mabuchi, “Quantum state transfer and entanglement distribution among distant nodes in a quantum network,” Phys. Rev. Lett. 78, 3221 (1997).
[Crossref]

A. Kuhn, M. Hennrich, and G. Rempe, “Deterministic single-photon source for distributed quantum networking,” Phys. Rev. Lett. 89, 067901 (2002).
[Crossref] [PubMed]

A. Zrenner, L. V. Butov, M. Hagn, G. Abstreiter, G. Bohm, and G. Weimann, “Quantum dots formed by interface fluctuations in AlAs/GaAs coupled quantum well structures,” Phys. Rev. Lett. 72, 3382 (1994).
[Crossref] [PubMed]

D. Gammon, E. S. Snow, B. V. Shanabrook, D. S. Katzer, and D. Park, “Fine structure splitting in the optical spectra of single GaAs quantum dots,” Phys. Rev. Lett. 76, 3005 (1996).
[Crossref] [PubMed]

C. Z. Peng, T. Yang, X. H. Bao, J. Zhang, X. M. Jin, F. Y. Feng, B. Yang, J. Yang, J. Yin, Q. Zhang, N. Li, B. L. Tian, and J. W. Pan, “Experimental free-space distribution of entangled photon pairs over 13 km: towards satellite-based global quantum communication,” Phys. Rev. Lett. 94, 150501 (2005).
[Crossref] [PubMed]

A. Imamoglu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum information processing using quantum dots spins and cavity QED,” Phys. Rev. Lett. 83, 4204 (1999).
[Crossref]

Phys. Today (1)

Y. Yamamoto and R. E. Slusher, “Optical processes in microcavities,” Phys. Today 46, 66 (1993).
[Crossref]

Physics Today (1)

S. Haroche and D. Kleppner, “Cavity quantum electrodynamics,” Physics Today 42, 24 (1989).
[Crossref]

Rev. Mod. Phys. (1)

G. Khitrova, H. M. Gibbs, F. Jahnke, M. Kira, and S. W. Koch, “Nonlinear optics of normal-mode-coupling semiconductor microcavities,” Rev. Mod. Phys. 71, 1591 (1999).
[Crossref]

Sci. Am. (1)

C. H. Bennett, G. Brassard, and A. Eckert, “Quantum cryptography,” Sci. Am. 267, 50 (1992).
[Crossref]

Science (3)

H. Mabuchi and A. C. Doherty, “Cavity quantum electrodynamics: coherence in context,” Science 298, 1372 (2002).
[Crossref] [PubMed]

Z. Yuan, B. E. Kardynal, R. M. Stevenson, A. J. Shields, C. J. Lobo, K. Cooper, N. S. Beattie, D. A. Ritchie, and M. Pepper, “Electrically driven single-photon source,” Science 295, 102 (2002).
[Crossref]

J. McKeever, A. Boca, A. D. Boozer, R. Miller, J. R. Buck, A. Kuzmich, and H. J. Kimble, “Deterministic generation of single photons from one atom trapped in a cavity,” Science 303, 1992 (2004).
[Crossref] [PubMed]

Solid State Commun. (1)

X. Fan, T. Takagahara, J. E. Cunningham, and H. Wang, “Pure dephasing induced by exciton-phonon interactions in narrow GaAs quantum wells,” Solid State Commun. 108, 857 (1998).
[Crossref]

Other (7)

The coating was made by Spectrum Thin Films Company, New York.

M. Trupke, E. A. Hinds, S. Eriksson, and E. A. Curtis, “Microfabricated high-finesse optical cavity with open access and small volume,” arXiv:quant-ph/0506234 (2005).

A. E. Siegman, in Lasers, (University Science Books, Mill Valley, CA, 1986).

D. Bouwmeester, A. Ekert, and A. Zeilinger, in The Physics of Quantum Information (Springer, Berlin, 2000).

S. Bhongale, M. Holland, and M. G. Raymer, “Quantum dot quantum computing: non-paraxial eigenmodes of microcavity,” presented at the APS 34th Meeting of the Division of AMO Physics, Boulder, CO, 20-24 May 2003.

H. J. Kimble, “Structure and dynamics in cavity quantum electrodynamics,” in Cavity Quantum Electrodynamics, P. Berman ed. (Academic Press, San Diego, 1994), pp. 203-266.

M. Born and E. Wolf, in Principles of Optics (7th Ed.), (Cambridge University Press, New York, 1999) pp. 338-340.

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1. Hemispherical cavity, comprised of a planar substrate and a concave glass surface with layer reflective coating (shown as grey region). The dashed lines approximate the 1/e intensity contours of the fundamental mode in the cavity and its continuation outside. The angular half-width of the mode is θC. The blow-up shows the DBR and the mode contours in the waist region. Typically the length L is 50μm, the depth d is 30μm and the waist diameter is 2w 0 = 1μm.
Fig. 2.
Fig. 2. (a) Melting borosilicate glass tubes to form nitrogen gas-bubbles in the glass and polishing the glass bulk into a 150μm-thick slide. (b) 40X pictures of a dimple. Diameter of the dimple = 200μm.
Fig. 3.
Fig. 3. Measured sphericity of the dimple with a Wyko interferometer at the University of Arizona.
Fig. 4.
Fig. 4. (a) Measured PSD surface roughness for five dimples and (b) semiconductor DBR mirror and super dielectric mirror with a Wyko interferometer. The relevant length scale (indicated by the blue arrow) is about one micron because our unique cavity design yields a waist size at the DBR of this size.
Fig. 5.
Fig. 5. (a) Measured dimple-mirror transmission versus angle from the optical axis at the mode focus region. (b) The coated curved dimple is glued using index-matching optical adhesive to the face of a 100X immersion-microscope objective with NA=1.3.
Fig. 6.
Fig. 6. Nano-scope spectral scans of different spatial locations on UA-grown sample, showing both spectrally and spatially well isolated single QD emission line (red circled) at low temperature in the 750–760 nm target region.
Fig. 7.
Fig. 7. Measured images of modes of 60μm micro-cavity. The modes are HG00, HG01, HG11 and LG01, from left to right, respectively.
Fig. 8.
Fig. 8. 60μm cavity transmission spectra with QDs at antinode. The cavity finesse is about 50 at room temperature.
Fig. 9.
Fig. 9. Numerical model for micro-cavity mode energy density, where the planar DBR structure is at the top and the curved mirror is in the lower half of the figure. The QD sits in a bright local maximum region in the first layer of the DBR. The results indicate that the mode waist is of the order of one wavelength.

Metrics

Select as filters


Select Topics Cancel
© Copyright 2023 | Optica Publishing Group. All Rights Reserved