Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Group velocity inversion in AlGaAs nanowires

Open Access Open Access

Abstract

We investigated the dispersion characteristics of submicron sized AlGaAs waveguides. Numerical simulations shows that the tight confinement of the optical waves in such nanowires leads to strong variations of the dispersion characteristics compared to classic, weakly guided waveguides of the same material system. We found numerically that the investigated structure has negative GVD for the TE mode provided the waveguide width is between 670 nm and 280 nm. Experimental data obtained from 300 μm - 1 mm long wires confirms the numerical results.

©2007 Optical Society of America

Full Article  |  PDF Article
More Like This
Tuneable four-wave mixing in AlGaAs nanowires

Ksenia Dolgaleva, Peyman Sarrafi, Pisek Kultavewuti, Kashif M. Awan, Norbert Feher, J. Stewart Aitchison, Li Qian, Maïté Volatier, Richard Arès, and Vincent Aimez
Opt. Express 23(17) 22477-22493 (2015)

Solitons in dispersion-inverted AlGaAs nanowires

R. El-Ganainy, S. Mokhov, K. G. Makris, D. N. Christodoulides, and R. Morandotti
Opt. Express 14(6) 2277-2282 (2006)

Enhanced third-order nonlinear effects in optical AlGaAs nanowires

G. A. Siviloglou, S. Suntsov, R. El-Ganainy, R. Iwanow, G. I. Stegeman, D. N. Christodoulides, R. Morandotti, D. Modotto, A. Locatelli, C. De Angelis, F. Pozzi, C. R. Stanley, and M. Sorel
Opt. Express 14(20) 9377-9384 (2006)

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1. Structure
Fig. 2.
Fig. 2. Example of a TE mode for 250 nm wide waveguide. (Arrow: electric field)
Fig. 3.
Fig. 3. GVD dependence on waveguide width and core height at a wavelength of 1.55 μm.
Fig. 4.
Fig. 4. GVB vs. wavelength and width. (h = 0.5 μm)
Fig. 5.
Fig. 5. Effective index of TE00 and TM00 vs. waveguide width for a wavelength of 1.55 μm.
Fig. 6.
Fig. 6. (a) Nano-wire general structure with tapering and feed. (b) The length parameters for the four different designs.
Fig. 7.
Fig. 7. (a) SEM image of fabricated nanowires. (b) Fringe period determined from measured spectra
Fig. 8.
Fig. 8. Group index ng vs. waveguide width for a wavelength of 1.55 μm.
Fig. 9.
Fig. 9. GVD vs. waveguide width for wavelength of 1.55 μm.
Fig. 10.
Fig. 10. GVD vs. wavelength for width of 668 nm, 323 nm and 280 nm. (core height = 0.5 μm)
Fig. 11.
Fig. 11. Effective area vs. waveguide width for a core height of 500 nm and a wavelength of 1.55 μm

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

Λ = Λ 0 + Λ 1 ( λ λ 0 ) + 1 2 Λ 2 ( λ λ 0 ) 2
d 2 β d λ 2 = π Λ 0 2 d Λ 1 .
n g = λ 2 2 π
β″ = λ 3 ( 2 πc ) 2 [ 2 + d 2 β d λ 2 ]
β total d = β feed d feed + β taper d taper + β wire d wire
A eff = [ I ( x , y ) d x d y ] 2 C o r e I 2 ( x , y ) d x d y
Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.