Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Simultaneous broadband Raman cascading and parametric conversion in potassium titanyl phosphate

Not Accessible

Your library or personal account may give you access

Abstract

We generated a broad spectrum of light between 1064 and 1300 nm in the infrared by cascading stimulated Raman scattering in a potassium titanyl phosphate crystal while broadband conversion of the infrared Raman cascade was simultaneously achieved in the visible through second-harmonic generation (SHG) and sum-frequency mixing. We observed that odd- and even-order cascaded Stokes components were spatially addressed at different angles of propagation in the crystal. The efficiency of SHG and sum-frequency mixing is discussed as a function of the pump polarization. We also report on significant spatial distortions of the output Stokes beams.

© 2013 Optical Society of America

Full Article  |  PDF Article
More Like This
Noncollinear optical parametric amplification in potassium titanyl phosphate pumped at 800 nm

Han-Kwang Nienhuys and Huib J. Bakker
Appl. Opt. 47(15) 2870-2873 (2008)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Metrics

Select as filters


Select Topics Cancel
© Copyright 2022 | Optica Publishing Group. All Rights Reserved