Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Terahertz metalens for generating multi-polarized focal points and images with uniform intensity distributions

Not Accessible

Your library or personal account may give you access

Abstract

Metasurfaces have provided a flexible platform for designing ultracompact metalenses with unusual functionalities. However, traditional multi-foci metalenses are limited to generating circularly polarized (CP) or linearly polarized (LP) focal points, and the intensity distributions are always inhomogeneous/chaotical between the multiple focal points. Here, an inverse design approach is proposed to optimize the in-plane orientation of each meta-atom in a terahertz (THz) multi-foci metalens that can generate multi-polarized focal points with nearly uniform intensity distributions. As a proof-of-principle example, we numerically and experimentally demonstrate an inversely designed metalens for simultaneously generating multiple CP- and LP-based focal points with homogeneous intensity distributions, leading to a multi-polarized image (rather than the holography). Furthermore, the multi-channel and multi-polarized images consisting of multiple focal points with homogeneous intensity distributions are also numerically demonstrated. The unique approach for inversely designing multi-foci metalens that can generate multi-polarized focal points and images with uniform intensity distributions will enable potential applications in imaging and sensing.

© 2024 Optica Publishing Group

Full Article  |  PDF Article
More Like This
Multi-foci metalens for terahertz polarization detection

Ruoxing Wang, Jin Han, Jianlong Liu, Hao Tian, Weimin Sun, Li Li, and Xianzhong Chen
Opt. Lett. 45(13) 3506-3509 (2020)

Helicity multiplexed terahertz multi-foci metalens

Tao Zhou, Juan Du, Yongsheng Liu, and Xiaofei Zang
Opt. Lett. 45(2) 463-466 (2020)

On-chip multi-trap optical tweezers based on a guided wave-driven metalens

Gang Yu, Jiaqi Guo, Jianwei Shi, Xu Mao, Hongsheng Ding, Houzhi Zheng, and Chao Shen
Opt. Lett. 49(5) 1225-1228 (2024)

Supplementary Material (1)

NameDescription
Supplement 1       Supporting Materials

Data availability

Data underlying the results can be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.