Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Perfect linear polarization wave generator based on quasi-bound states in the continuum

Not Accessible

Your library or personal account may give you access

Abstract

Quasi-bound states in the continuum (q-BICs) in optical metasurfaces have been found to carry special radiation polarization properties. Herein, we have studied the relationship between the radiation polarization state of a q-BIC and the polarization state of the output wave, and theoretically proposed a perfect linear polarization wave generator controlled by the q-BIC. The proposed q-BIC has an x-polarized radiation state, and the y co-polarized output wave is completely eliminated by introducing additional resonance at the q-BIC frequency. Finally, a perfect x-polarized transmission wave with very low background scattering is obtained, and the transmission polarization state is not limited by the incident polarization state. The device can be used to efficiently obtain narrowband linearly polarized waves from non-polarized waves, and can also be used for polarization-sensitive high-performance spatial filtering.

© 2023 Optica Publishing Group

Full Article  |  PDF Article
More Like This
Dual-mode tunable absorber based on quasi-bound states in the continuum

Wei Xu, Di Zhang, Xi-Rong Shi, Hai-Yu Meng, Jing Yue, Xiang Zhai, Sheng-Xuan Xia, Hong-Ju Li, and Ling-Ling Wang
Opt. Lett. 48(23) 6088-6091 (2023)

Phase-change metasurfaces for dynamic control of chiral quasi-bound states in the continuum

Shi Li, Tian Sang, Chaoyu Yang, Junjian Lu, and Yueke Wang
Opt. Lett. 48(24) 6488-6491 (2023)

Near-perfect quantitatively tunable Q factors of quasi-bound states in the continuum via material-based thermal-optic perturbations

Dongwen Zeng, Shu Zong, Guiqiang Liu, Wen Yuan, Xiaoshan Liu, Jing Chen, Chaojun Tang, and Zhengqi Liu
Opt. Lett. 48(15) 3981-3984 (2023)

Supplementary Material (1)

NameDescription
Supplement 1       The document includes S1. Theoretical design of scattering matrix, S2. Comparison of reflectivity and transmittance at q-BIC, S3. The x and y co-polarized transmittance spectra with substrate thickness of 200 um, S4. Variation of resonance frequency.

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.