Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Ultracompact terahertz plasmonic mode division multiplexer

Not Accessible

Your library or personal account may give you access

Abstract

In this Letter, an ultracompact terahertz (THz) mode division multiplexer based on THz spoof surface plasmon polaritons (SPPs) is proposed. Compared with traditional optical multiplexing devices, the proposed mode multiplexer can be designed with a reduced footprint by exploiting more degrees of freedom in the parameters of the unit cell, namely a rectangular metallic pillar. The ultracompact mode division multiplexer can simultaneously support the propagation of four mode channels: the TM0, TM1, TM2, and TM3 modes. Then, we numerically evaluate the performance of a cascaded plasmonic mode division circuit composed of a mode multiplexer and demultiplexer. The cross talk and excess loss of the whole circuit are lower than –15 dB and 3.7 dB, respectively, for all four mode channels at a center frequency of 0.65 THz. The footprint of the whole device is about 27 × 2.3 mm and the length of each coupling region is about 2.7 mm. For the first time, to the best of our knowledge, a mode division multiplexer based on THz spoof SPPs is reported, which will form core devices for future THz on-chip multimode communication systems.

© 2023 Optica Publishing Group

Full Article  |  PDF Article
More Like This
Monolithically integrated reconfigurable add-drop multiplexer for mode-division-multiplexing systems

Shipeng Wang, Hao Wu, Hon Ki Tsang, and Daoxin Dai
Opt. Lett. 41(22) 5298-5301 (2016)

Silicon-based hybrid demultiplexer for wavelength- and mode-division multiplexing

Ying Tan, Hao Wu, Shipeng Wang, Chenlei Li, and Daoxin Dai
Opt. Lett. 43(9) 1962-1965 (2018)

On-chip reconfigurable optical add-drop multiplexer for hybrid wavelength/mode-division-multiplexing systems

Shipeng Wang, Xianglian Feng, Shiming Gao, Yaocheng Shi, Tingge Dai, Hui Yu, Hon-Ki Tsang, and Daoxin Dai
Opt. Lett. 42(14) 2802-2805 (2017)

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.