Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Ionization of atomic hydrogen in superintense, high frequency laser fields

Not Accessible

Your library or personal account may give you access

Abstract

We present results on the multiphoton ionization of the hydrogen atom in high frequency laser fields, obtained within a theory of atomic interactions developed specifically for these circumstances.1 The theory is nonperturbative in the intensity and can cover the case of superintense fields (i.e., of intensities in excess of the atomic unit, 3.5×1016 W/cm2), now of considerable interest. One of its characteristic features is that, in the high frequency limit a one electron atom is stable against ionization, albeit strongly distorted. Under these circumstances it turns out that the atomic structure depends on the intensity I and frequency ω of the radiation only through the parameter α0 = I1/2ω−2 a.u. When passing to finite, though sufficiently high frequencies, ionization becomes possible, and general formulas have been derived for the n-photon absorption amplitudes.1 These require the knowledge of the eigenfunctions of the high frequency limit calculated before.2 We have computed the n-photon amplitudes numerically and obtained results for the angular and total ionization rates. The lifetimes obtained for the (steadily) decaying atom can be quite long with respect to relevant experimental durations. This suggests that high frequencies represent an appropriate means for studying the effect of superintensities on atoms.

© 1989 Optical Society of America

PDF Article
More Like This
Multiphoton ionization of atomic hydrogen in superintense, high-frequency laser fields

M. Pont
QThB4 Quantum Electronics and Laser Science Conference (CLEO:FS) 1991

Structure of atomic hydrogen in high-intensity high-frequency laser fields

M. Gavrila, M. J. Offerhaus, M. Pont, N. Walet, and C. W. McCurdy
TUS9 OSA Annual Meeting (FIO) 1987

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.