Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Chinese Optics Letters
  • Vol. 22,
  • Issue 5,
  • pp. 051202-
  • (2024)

Raman signal enhancement for gas detection using a dual near-concentric cavities group

Not Accessible

Your library or personal account may give you access

Abstract

Effective methods are urgently required to optimize Raman spectroscopy technology to ameliorate its low detection sensitivity. Here, we superposed two near-concentric cavities to develop a dual near-concentric cavities group (DNCCG) to assess its effect on gas Raman signal intensity, signal-to-noise ratio (SNR), and limit of detection (LOD). The results showed that DNCCG generally had higher CO2 Raman signal intensity than the sum of two near-concentric cavities. Meanwhile, the noise intensity of DNCCG was not enhanced by the superposition of near-concentric cavities. Accordingly, DNCCG increased the SNR. The LOD for CO2 was 24.6 parts per million. DNCCG could be an effective method to improve the detection capability of trace gases and broaden the dynamic detection range, which might aid the future development of innovative technology for multicomponent gas detection.

© 2024 Chinese Laser Press

PDF Article

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.