Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Balance between the diffraction efficiency and process robustness for plasmonic lithographic alignment technology considering the Fabry–Perot resonator effect

Not Accessible

Your library or personal account may give you access

Abstract

Different from traditional lithography, metal material with high absorptivity and high reflectivity is introduced into plasmonic lithography technology. In particular, a silver/photo resist/silver film stack can form a Fabry–Perot (F-P) resonator structure, which can greatly change the behavior of the light reflection and transmission. Since the silver layer has a strong absorption ability to the alignment probe light with a wavelength of 532 or 633 nm, the quality of the alignment signal is seriously affected. In this paper, a thin film Fourier transfer model is established to quantitatively calculate the amplitude and phase information of the diffraction light with different orders. The results show that the diffraction optical power can be enhanced by the thickness optimization of all film stacks, and the maximum wafer quality (normalized diffraction efficiency) can be increased to 25.7%. The mechanism analysis of alignment signal enhancement is based on the F-P resonator phase oscillation amplification effect. However, it can also bring the reverse of both the power and phase for the alignment probe signal when the thickness fluctuation of the F-P resonator exists, which will be a great challenge for through-the-mask moiré fringe alignment technology. To obtain the optical power distribution of the structure surface and image of moiré fringes, a transfer matrix method is given to point-by-point calculate the incidence and reflection of the probe light in the vertical direction. The finite-difference time-domain method is also used to demonstrate alignment performance. It is proved that the subtle fluctuation of the photoresist thickness can make a huge difference to moiré fringes. A balance between the diffraction efficiency and process robustness can be achieved for plasmonic lithographic alignment technology by controlling the thickness range of the F-P resonator structure. In addition, the metal-insulator-metal structure has excellent thickness sensitivity and is applicable to optical signal detection and material property monitoring.

© 2023 Optica Publishing Group

Full Article  |  PDF Article

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (6)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.