Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Chinese Optics Letters
  • Vol. 22,
  • Issue 5,
  • pp. 050601-
  • (2024)

Robust thin-film lithium niobate modulator on a silicon substrate with backside holes

Not Accessible

Your library or personal account may give you access

Abstract

Recently, Mach–Zehnder modulators based on thin-film lithium niobate have attracted broad interest for their potential for high modulation bandwidth, low insertion loss, high extinction ratio, and high modulation efficiency. The periodic capacitively loaded traveling-wave electrode is optimally adopted for ultimate high-performances in this type of modulator. However, such an electrode structure on a silicon substrate still suffers from the velocity mismatch and substrate leakage loss for microwave signals. Here, we introduce a thin-film lithium niobate modulator structure using this periodic capacitively loaded electrode on a silicon substrate. Backside holes in the silicon substrate are prepared to solve robustly the above difficulties. The fabricated device exhibits an insertion loss of 0.9 dB, a halfwave-voltage–length product of 2.18 V·cm, and an ultra-wide bandwidth well exceeding 67 GHz for a 10-mm-long device. Data transmissions with rates up to 112 Gb/s are demonstrated. The proposed structure and fabrication strategy are compatible for other types of monolithic and heterogeneous integrated thin-film lithium niobate modulators on a silicon substrate.

© 2024 Chinese Laser Press

PDF Article

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.