Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Chinese Optics Letters
  • Vol. 15,
  • Issue 2,
  • pp. 020602-
  • (2017)

Air turbulence effects on performance of optical wireless communication with crosstalk in server backplane

Not Accessible

Your library or personal account may give you access

Abstract

Free space optical interconnections (FSOIs) are anticipated to become a prevalent technology for short-range high-speed communication. FSOIs use lasers in board-to-board and rack-to-rack communication to achieve improved performance in next generation servers and are expected to help meet the growing demand for massive amounts of inter-card data communication. An array of transmitters and receivers arranged to create an optical bus for inter-card and card-to-backplane communication could be the solution. However, both chip heating and cooling fans produce temperature gradients and hot air flow that results in air turbulence inside the server, which induces signal fading and, hence, influences the communication performance. In addition, the proximity between neighboring transmitters and receivers in the array leads to crosstalk in the received signal, which further contributes to signal degradation. In this Letter, the primary objective is to experimentally examine the off-axis crosstalk between links in the presence of turbulence inside a server chassis. The effects of geometrical and inter-chassis turbulence characteristics are investigated and first-and second-order statistics are derived.

© 2016 Chinese Laser Press

PDF Article
More Like This
Experimental study of the turbulence effect on underwater optical wireless communications

Zahra Vali, Asghar Gholami, Zabih Ghassemlooy, Masood Omoomi, and David G. Michelson
Appl. Opt. 57(28) 8314-8319 (2018)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.