Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Chinese Optics Letters
  • Vol. 19,
  • Issue 11,
  • pp. 111405-
  • (2021)

Switchable single- and dual-wavelength femtosecond mode-locked Er-doped fiber laser based on carboxyl-functionalized graphene oxide saturable absorber

Not Accessible

Your library or personal account may give you access

Abstract

In this Letter, we demonstrated the switchable single- and dual-wavelength femtosecond soliton generation in single-mode Er-doped fiber lasers with the usage of carboxyl-functionalized graphene oxide (GO-COOH) saturable absorbers (SAs) for the first time, to the best of our knowledge. The fiber laser generated a stable single-wavelength conventional soliton at 1560.1 nm with a pulse duration of 548.1 fs. The dual-wavelength solitons centered at 1531.9 nm and 1555.2 nm with a spacing of approximately 23 nm can be obtained by adjusting the pump power of the cavity. Our experimental results indicated the GO-COOH has great potential to be used in ultrafast fiber lasers as broadband SAs.

© 2021 Chinese Laser Press

PDF Article
More Like This
Graphene Oxide vs. Reduced Graphene Oxide as saturable absorbers for Er-doped passively mode-locked fiber laser

Grzegorz Sobon, Jaroslaw Sotor, Joanna Jagiello, Rafal Kozinski, Mariusz Zdrojek, Marcin Holdynski, Piotr Paletko, Jakub Boguslawski, Ludwika Lipinska, and Krzysztof M. Abramski
Opt. Express 20(17) 19463-19473 (2012)

Tunable and switchable multi-wavelength dissipative soliton generation in a graphene oxide mode-locked Yb-doped fiber laser

Shisheng Huang, Yonggang Wang, Peiguang Yan, Junqing Zhao, Huiquan Li, and Rongyong Lin
Opt. Express 22(10) 11417-11426 (2014)

Graphene oxide paper as a saturable absorber for Er- and Tm-doped fiber lasers

Jakub Boguslawski, Jaroslaw Sotor, Grzegorz Sobon, Rafal Kozinski, Krzysztof Librant, Magdalena Aksienionek, Ludwika Lipinska, and Krzysztof M. Abramski
Photon. Res. 3(4) 119-124 (2015)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.