Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Chinese Optics Letters
  • Vol. 21,
  • Issue 11,
  • pp. 110006-
  • (2023)

Inverse design on terahertz multilevel diffractive lens based on 3D printing [Invited]

Not Accessible

Your library or personal account may give you access

Abstract

Terahertz (THz) lenses have numerous applications in imaging and communication systems. Currently, the common THz lenses are still based on the traditional design of a circular convex lens. In this work, we present a method for the design of a 3D-printed multilevel THz lens, taking advantage of the benefits offered by 3D printing technology, including compact size, lightweight construction, and cost-effectiveness. The approach utilizes an inverse design methodology, employing optimization methods to promise accurate performance. To reduce simulation time, we employ the finite-difference time-domain method in cylindrical coordinates for near-field computation and couple it with the Rayleigh–Sommerfeld diffraction theory to address far-field calculations. This technology holds great potential for various applications in the field of THz imaging, sensing, and communications, offering a novel approach to the design and development of functional devices operating in the THz frequency range.

© 2023 Chinese Laser Press

PDF Article

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.