Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 40,
  • Issue 8,
  • pp. 2244-2253
  • (2022)

Precise Time Distribution and Synchronization for Low Latency Slotted Optical Metro-Access Networks

Not Accessible

Your library or personal account may give you access

Abstract

Future optical metro access networks will connect heterogeneous access technologies like beyond 5G radio access networks and edge computing interconnections. These access networks and their diversified use cases will impose significant challenges on network capacity, wavelength resource and network synchronization. In this paper, we present and investigate a novel time slotted optical metro access network controlled by a multifunctional supervisory channel for precise time distribution, nodes synchronization, and fast wavelength reusing to improve the overall network performance for low and deterministic latency applications. The supervisory channel carries timestamps of different nodes in different time slots, and the labels with the data channels’ destinations in every time slot. By analyzing the supervisory channel at each node, the timestamps and add/drop information can be precisely and fast exchanged. A network testbed has been implemented for assessing the proposed network operation and precise time synchronization. The results show successful time slotted network operation, 82% of bandwidth usage and 2.5 $\mu$ s latency have been achieved. Below 12 ns time accuracy has been measured for a metro ring and 5G front haul network with a single time reference. To assess the scalability and wavelength saving of the proposed network in a larger network, a simulation model has been developed in OMNeT++ based on the experimental parameters. Numerical results show more than 16% wavelengths can be saved by our technology compared with Cloud Burst Optical-Slot Switching (CBOSS) [1].

PDF Article
More Like This
Flexible low-latency metro-access converged network architecture based on optical time slice switching

Jialong Li, Nan Hua, Zhizhen Zhong, Yufang Yu, Xiaoping Zheng, and Bingkun Zhou
J. Opt. Commun. Netw. 11(12) 624-635 (2019)

Performance assessment of a fast optical add-drop multiplexer-based metro access network with edge computing

Bitao Pan, Fulong Yan, Xuwei Xue, Eduardo Magelhaes, and Nicola Calabretta
J. Opt. Commun. Netw. 11(12) 636-646 (2019)

ReSAW: a reconfigurable and picosecond-synchronized optical data center network based on an AWGR and the WR protocol

Zuoqing Zhao, Xuwei Xue, Bingli Guo, Yisong Zhao, Xinwei Zhang, Yuanzhi Guo, Wei Ji, Rui Yin, Bin Chen, and Shanguo Huang
J. Opt. Commun. Netw. 14(9) 702-712 (2022)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.