Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Near Infrared Spectroscopy
  • Vol. 22,
  • Issue 1,
  • pp. 35-43
  • (2014)

Rapid Prediction of Phenolic Compounds as Chemical Markers for the Natural Durability of Teak (Tectona Grandis Linn f.) Heartwood by near Infrared Spectroscopy

Not Accessible

Your library or personal account may give you access

Abstract

Near infrared (NIR) spectroscopy provides rapid and non-destructive analysis of wood properties and composition. In this study, we aimed to use NIR measurement for the prediction of teak phenolic compounds, which are chemical markers for natural durability of wood. Twenty-seven teak trees from two geographical zones (Malaysia and Ivory Coast) were used. On ground heartwood samples, the content of total phenolics and individual quinones (tectoquinone, 2-(hydroxymethyl)anthraquinone, 2-anthraquinone carboxylic acid, 1,4-naphthoquinone and 4′,5′-dihydroxy-epiisocatalponol) were determined using high performance liquid chromatography (HPLC). Partial least squares (PLS) regression with NIR spectra on the same samples and phenolic data was used to build NIR models for phenolic contents. The PLS models for the total predicted phenolics and three quinone contents (tectoquinone, 2-(hydroxymethyl) anthraquinone, and 4′,5′-dihydroxy-epiisocatalponol) showed a good ratio of performance to deviation (RPD ⩾ 2.5), strong coefficients of determination (r2 ⩾; 0.8) and the prediction errors were consistent with the reference method. These results demonstrate that NIR spectroscopy can be reliable for the evaluation of total phenolics and individual quinones in teak heartwood wood meal. NIR spectroscopy is a promising technique for rapidly providing information on the quinone contents in teak wood and indirectly for knowing its natural durability. This finding leads to a precise, non-destructive tool for teak wood quality evaluation.

© 2014 IM Publications LLP

PDF Article
More Like This
Rapid determination of the main components of corn based on near-infrared spectroscopy and a BiPLS-PCA-ELM model

Lili Xu, Jinming Liu, Chunqi Wang, Zhijiang Li, and Dongjie Zhang
Appl. Opt. 62(11) 2756-2765 (2023)

Accurate and rapid detection of soil and fertilizer properties based on visible/near-infrared spectroscopy

Zhidan Lin, Rujing Wang, Yubing Wang, Liusan Wang, Cuiping Lu, Yang Liu, Zhengyong Zhang, and Likai Zhu
Appl. Opt. 57(18) D69-D73 (2018)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.