Abstract
Amino resins are produced by two main processes: the strong acid process and the alkaline-acid process. Both use formaldehyde and a base (e.g. sodium hydroxide) in their formulation. In this work, Forward Interval Partial Least Squares methodology was applied to create prediction models for the determination of the concentration of formaldehyde and residual methanol (that is present in the formaldehyde solution) used in the production of amino resins. Near infrared (NIR) spectra were acquired at two different temperatures: 18 and 35°C. A Partial Least Squares calibration models were established with the measured values from reference methods: namely, sodium sulfite (formaldehyde) and gas chromatography (methanol). The performances of the best models were compared using the root mean square error of cross validation (RMSECV) and coefficient of determination for prediction (r2). The best results obtained a r2 above 0.994. The RMSECV values obtained were 0.063% (m/m) and 0.031% (m/m) for the formaldehyde and methanol concentration, respectively. External validation was performed using different formaldehyde solution samples. The NIR methodology presented in this work proved to be effective and enables a significant time reduction, when compared to the reference methods, in the measurement of formaldehyde and methanol concentrations.
© 2022 The Author(s)
PDF Article
References
You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription
Cited By
You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription