Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Near Infrared Spectroscopy
  • Vol. 30,
  • Issue 3,
  • pp. 160-168
  • (2022)

Prediction of formaldehyde and residual methanol concentration in formalin using near infrared spectroscopy

Not Accessible

Your library or personal account may give you access

Abstract

Amino resins are produced by two main processes: the strong acid process and the alkaline-acid process. Both use formaldehyde and a base (e.g. sodium hydroxide) in their formulation. In this work, Forward Interval Partial Least Squares methodology was applied to create prediction models for the determination of the concentration of formaldehyde and residual methanol (that is present in the formaldehyde solution) used in the production of amino resins. Near infrared (NIR) spectra were acquired at two different temperatures: 18 and 35°C. A Partial Least Squares calibration models were established with the measured values from reference methods: namely, sodium sulfite (formaldehyde) and gas chromatography (methanol). The performances of the best models were compared using the root mean square error of cross validation (RMSECV) and coefficient of determination for prediction (r2). The best results obtained a r2 above 0.994. The RMSECV values obtained were 0.063% (m/m) and 0.031% (m/m) for the formaldehyde and methanol concentration, respectively. External validation was performed using different formaldehyde solution samples. The NIR methodology presented in this work proved to be effective and enables a significant time reduction, when compared to the reference methods, in the measurement of formaldehyde and methanol concentrations.

© 2022 The Author(s)

PDF Article
More Like This
Rapid, accurate, and precise concentration measurements of a methanol–water mixture using Raman spectroscopy

Daniel D. Hickstein, Russell Goldfarbmuren, Jack Darrah, Luke Erickson, and Laura A. Johnson
OSA Continuum 1(3) 1097-1110 (2018)

Rapid detection of carbon-nitrogen ratio for anaerobic fermentation feedstocks using near-infrared spectroscopy combined with BiPLS and GSA

Jinming Liu, Nan Li, Feng Zhen, Yonghua Xu, Wenzhe Li, and Yong Sun
Appl. Opt. 58(18) 5090-5097 (2019)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.