Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Near Infrared Spectroscopy
  • Vol. 4,
  • Issue 1,
  • pp. 139-152
  • (1996)

Two-Dimensional Vibration Spectroscopy. V: Correlation of Mid- and near Infrared of Hard Red Winter and Spring Wheats

Not Accessible

Your library or personal account may give you access

Abstract

Two-dimensional correlation spectroscopy across the near infrared (NIR) and mid-infrared (MIR) regions have been used to explain the NIR spectra of hard red winter and spring wheat and provide additional confidence in analytical models developed with empirical data. Recent studies have shown that the major C–H stretching vibrations and some of the aromatic C–H and ring stretching vibrations and the minor vibrations in the “fingerprint” region are correlated also. The technique has been expanded to include Raman spectra. The Raman spectra were enhanced with Maximum Likelihood methods to improve signal-to-noise (S/N) while maintaining resolution. This was necessary to eliminate the effects of fluorescence which degrades S/N. The use of NIR lasers at 1.1 μm generally eliminates fluorescence as a problem, but it is still quite prevalent in agricultural materials. The original study did not show any significant correlations to aromatic functionality. However, the band at 1552 nm correlates to the Raman and not to the MIR. This band has shown up in NIR spectroscopy models for the determination of lignin, but is not readily observed in the MIR. Thus it correlates to a Raman active rather than a MIR active band. The same phenomena are observed for the amide I, II and III bands for wheat. The interesting features from NIR and MIR are that there are correlations that distinguish winter from spring wheat. These, and the Raman spectra of wheat, will be shown. These studies show that multiple regions of the electromagnetic spectrum can be, and in deed need to be, used to interpret adequately the spectral and statistical results we have traditionally obtained in the NIR.

© 1996 NIR Publications

PDF Article
More Like This
UAV-based hyperspectral analysis and spectral indices constructing for quantitatively monitoring leaf nitrogen content of winter wheat

Hongchun Zhu, Haiying Liu, Yuexue Xu, and Yang Guijun
Appl. Opt. 57(27) 7722-7732 (2018)

Establishing NDRE dynamic models of winter wheat under multi-nitrogen rates based on a field spectral sensor

Meiyan Shu, Xiaohe Gu, Longfei Zhou, Bo Xu, and Guijun Yang
Appl. Opt. 60(4) 993-1002 (2021)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.